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Abstract 
The goal of this project was to program a flight controller 

firmware to achieve autonomous collision avoidance (ACA) for 

small unmanned aerial vehicles (UAVs). The UAV we adopted 

was a quadcopter frame from Aerotestra[1]. The firmware was 

developed from the existing open-source code from ardupilot 

community [2]. ACA was realized by utilization of a LIDAR 

sensor to measure the distance between quadcopter and the closest 

object in its nose direction. 

1. Introduction 
A multicopter is a mechanically simple aerial vehicle whose 

motion is controlled by speeding or slowing multiple downward 

thrusting motor/propeller units. Unlike traditional helicopter or 

fixed-wing aircraft, it does not need to vary the rotor blade pitch 

angle. This simplifies the design and control of the vehicle. It is 

often used in applications such as aero-photography, aerial 

mapping. In our project we use a 4 propeller multicopter frame, 

i.e. a quadcopter. 

The existing firmware code developed by ardupilot 

community supports auto-piloting feature utilizing the 3DR uBlox 

GPS sensor [3]. The feature is achieved by running the 

quadcopter in auto-mode. In this flight mode, the quadcopter runs 

a mission by reading the pre-written GPS coordinates and 

commands itself to fly towards each waypoint sequentially. 

However, the existing firmware does not support any object 

detection and avoidance schemes. For instance, the quadcopter 

will crash into a tree if the tree stands between two waypoints. 

The firmware on the Pixhawk flight controller is modified so that 

it can detect the object blocking its way during a mission, avoid 

the object, and continue to its next waypoint, shown in figure 1. 

Implementation of this will be explained in this report. 

 
Figure 1 Idea of ACA 

2. Hardware and Software 

2.1 Hardware 
Quadcopter frame We use Aerotestra quadcopter model Hugo 

for our project. The model includes the Foxtech 4016/380 Kv 

Brushless Motor, 15’ * 5.5 carbon fiber propeller and 915 Mhz 

telemetry radio link. [1] 

Flight controller The 3DR Pixhawk is used for Hugo as the flight 

controller. The flight controller is installed with our custom 

firmware based on ArduCopter V3.3 from the Ardupilot 

community. The firmware base has the essentials for the 

quadcopter to fly, but has been modified to achieve our goals.  [4] 

Essential Flight sensors The position of the quadcopter is 

obtained by the longitude and latitude from the GPS module and 

the altitude is obtained from the barometer. The orientation and 

rotation are known by the angular velocity and acceleration from 

the three axis gyroscope and accelerometer. The electrical 

compass is also needed to determine the heading. All essential 

sensors except GPS are onboard. 

LIDAR-Lite The LIDAR-Lite laser-based sensor is used to do 

object detection and avoidance. The communication protocol it 

uses is I2C. It has a very narrow beam angle of 1.5 degrees and 

can detect objects from 0.2 meters up to 40 meters. The sensor has 

a resolution of 1cm.  

The LIDAR-Lite can be used for various applications depending 

on the orientation of the sensor. If the sensor is pointing down to 

the ground, it can be used for altitude. In our case, the LIDAR-

Lite sensor is mounted on the front of the quadcopter to detect 

objects in the forward direction. 

In order to power the sensor, we have attached 4 AA batteries in a 

battery pack to supply the required 4.7 - 5.5 Volts. 

2.2 Software 
User interface Mission Planner is adopted to act as a ground 

station for control. Flight status can be monitored on the mission 

planner interface. [5] 

Code Modification software Eclipse is the compiler we use to 

modify and build the firmware. 

2.3 Firmware Structure 
The original Firmware developed by ardupilot is a well-structured 

code with hierarchy. We fully understood and inherited its 

structure during the project. The hierarchy of the firmware 

structure is listed below, from highest level to lowest level: 

Scheduler The scheduler acts as the main function that runs 

repeatedly. It is also a real time operating system that assigns each 

thread with a certain call frequency, priority and maximum run 

time. 

Flight mode controller The flight mode controller determines the 

feature of quadcopter movement. At any time, the board must be 

inside one of the flight modes to ensure system integrity. 

Depending on the flight mode, values from remote controller 

channels such as pitch/roll/yaw may be applied or ignored. The 



flight modes can be changed via channel 5 of the remote 

controller. Additional flight modes can be created for a more 

isolated environment and more control over the quadcopter for 

different applications. 

Movement controller The movement controller includes four 

controllers dealing with altitude, attitude, position, and waypoints. 

The altitude controller uses the barometer to control the z-axis 

acceleration. It tries to maintain the altitude in altitude hold 

condition and also adjusts altitude if ascending/descending is 

required. The attitude controller controls self-rotation and 

balances the quadcopter. This is useful for balancing against wind 

and motor output differences. The position controller controls 

horizontal x-y axis acceleration. Lastly, the waypoint controller 

works with the GPS to determine the corresponding direction and 

speed in auto mode according to the preset waypoints. 

Library files The library files interact with all the lower level 

communication with sensors, data processing and computations, 

as well as motor outputs. Examples of library files include: GPS, 

LIDAR, PID control, mavlink, filter, etc. 

HAL layer The HAL (hardware abstraction layer) deals with the 

board I/O itself. It sets the value for digital/analog inputs and 

outputs. 

3. Method 
For completing our object detection goal, we implemented fixes to 

the LIDAR-Lite sensor, created an AI object, created various 

states, and made an avoidance scheme. 

3.1 LIDAR stagnancy 
The LIDAR-Lite sensor has a problem dealing with objects that 

are out of its range (0.2m to 40m). When the LIDAR is suddenly 

pointing at something out of its range, it will keep the previous 

value and will not update the latest value. For example, if the 

LIDAR is pointing at an object 5 meters away and is suddenly 

moved to point to something 45 meters away, the reading returned 

will be 5 meters. When the sensor doesn’t update, we consider the 

LIDAR reading to be stagnant. To solve this problem, we 

implemented a function that filters the LIDAR sensor reading. 

When the previous reading is greater than a threshold (we set it to 

1 meter) and it stagnates for more than one second, we assume 

that the sensor is pointing to something beyond 40 meters. We 

arbitrarily interpret the reading as infinite. Conversely, when the 

previous reading is less than 1 meter and it stagnates for more 

than one second, we assume that the sensor is pointing to 

something less than 0.2 meters. With the filter, we will always 

have readings that correspond to what the LIDAR sensor detects. 

Figure 2 shows the function for filtering LIDAR stagnancy  

 

Figure 2 update_lidar function 

3.2 ACA AI object 
To implement the ACA feature, we create a new C++ class called 

ACA_AI. All modifications to the original source code regarding 

ACA is implemented and processed in this object. To minimize 

interference with the other running schedules and keep the code 

structure clear, the member functions in ACA object run 

independently. ACA references two global variables 

(sonar_distance_cm as distance measured from LIDAR sensor, and 

milliseconds as system clock from flight controller), generates 

corresponding RC channel values, and updates the state 

iteratively. The values generated and updated are applied by the 

flight mode controller in auto mode accordingly. As a whole, the 

ACA AI object acts as an internal artificial intelligence (AI) that 

replaces the remote control to send appropriate commands to the 

quadcopter. 

Figure 3 shows the file linkage relationship between ACA AI and 

some other essential files/objects 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 ACA AI object  

 

 

 

 

 

Arducopter.pde 

 
sonar_distance_cm 

milliseconds 

ACA_AI.cpp 
… 

void update_ten_hz(int 

milliseconds);       

void update_lidar(int 

sonar_distance_cm); 

void update_state(); 

void apply_avoid(); 

void update_rc(); 

 

Process                  … 
int wp_speed 

int rc1_input 

int rc2_input 

int rc3_input 

ACA_state current_stat 

ACA_direction current_dir 

… 

… 

Reference 

Control_auto.pde 
wp_nav.set_pilot_desired_acceleration

(ai.rc1_input, ai.rc2_input); 

get_pilot_desired_climb_rate(ai.rc3_i

nput); 

set_speed_xy(wp_speed) 

 

Apply 



3.3 State transition 
ACA AI serves as a company with the normal auto mode of the 

quadcopter. In normal auto mode, the quadcopter will run a flight 

mission according to the pre-set way points. When the ACA AI is 

activated, it will transits among four states according to the 

LIDAR distance. The four states are Sleep, Slow, Halt and Avoid. 

ACA AI enters Sleep state and keeps the way point speed high 

when no objects is nearby. It switches to Slow state and reduces 

the way point speed to be ready for object incidence when object 

is sensed at a long distance. It goes into Halt state and cancels 

movement in auto mode when object is sensed at a short distance. 

After reassuring the object incidence is true, it activates Avoid 

state to apply an avoidance scheme. 

Figure 4 illustrates the state transition diagram of ACA AI 

 

Figure 4 ACA AI state transition diagram 

3.4 Avoidance scheme 
After true object incidence is verified, ACA AI generates 

corresponding RC channel value to command the quadcopter in 

order to bypass the object. ACA AI starts with a leftward 

movement, followed by a rightward movement and ended with an 

upward movement. During the attempts, whenever the LIDAR 

distance no longer returns a short distance for a period of time (we 

set it to 3 seconds), meaning the object no longer stands in front 

of the quadcopter, ACA AI attempts a forward movement to 

complete the avoidance scheme. If the avoidance scheme is 

applied successfully, ACA AI goes back to Halt state and is ready 

to resume the previous mission. Otherwise, it keeps making avoid 

attempts. 

Figure 5 illustrates the timing diagram of the avoid scheme in 

ACA AI 

 

Figure 5 Avoidance scheme timing diagram 

 

4. Results and Evaluations 
The firmware we created is able to accomplish the autonomous 

collision avoidance feature as expected. However, the object is 

constrained to a flat surface to ensure successful avoidance. We 

have made two successful experiments that demonstrate the ability 

of our state transitions and avoidance scheme. 

In the first experiment, the quadcopter was assigned to run a 

mission on a large field. We had a person carrying a piece of 

cardboard that simulates a large building. The quadcopter 

attempted to avoid the object by going left, right, and finally up. 

After the three attempts, it detected that there is no object and 

continues to its next waypoint. Log map is shown in Figure 6. 

 

Figure 6 Flight log of experiment on cardboard 

In the second experiment, the quadcopter was assigned to run a 

mission with a tree in the way. During the mission the quadcopter 

automatically went around the tree that blocked its way. Log map 

is shown in Figure 7. 

 

Figure 7 Flight log of experiment on Tree 

The two experiments were recorded with live video records and 

screen capture of Mission Planner log. Links to the videos are 

given: 

experiment Live video MP log 

Card board youtu.be/by2NV3cgJnc youtu.be/sbxltKb1jWo 

Tree youtu.be/Y__QCXf_xPI youtu.be/IeLikO9GvX0 

Pre-set path    

Actual path 

Object 

 

Pre-set path                      Tree 

Actual path 

 



 

5. Additional modifications 
In addition to the ACA AI object we created, we also managed to 

explore some other features on the quadcopter firmware. The 

other two major modifications we made were creating a new flight 

mode and enabling a force landing RC command. 

5.1 New flight mode – test mode 
The test mode is for testing flight control algorithms and methods 

in addition to the existing 16 flight modes, without interfering 

other lower level functions. The algorithm we put in the test mode 

is an image guided control algorithm. An FPGA board process the 

image and sends corresponding commands to the quadcopter via 

general purpose digital pins. [6] 

5.2 Force landing RC command 
The force landing RC command serves as an emergency disarm 

switch for the motors. In the original firmware, the quadcopter 

relies on the altitude calculated from barometer readings to disarm 

the motors. In case of faulty barometer readings, the quadcopter 

motors cannot be disarmed properly. With the additional force 

landing RC command, quadcopter can disarm the motors 

whenever the user sends the force landing command. 
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More information can be found at our project website: 

 minjiezhu.wordpress.com/quadcopter/ 
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