
Deep learning based RF fingerprinting for
device identification and wireless security

Qingyang Wu, Carlos Feres, Daniel Kuzmenko, Ding Zhi,
Zhou Yu, Xin Liu and Xiaoguang ‘Leo’ Liu✉
RF fingerprinting is an emerging technology for identifying
hardware-specific features of wireless transmitters and may find impor-
tant applications in wireless security. In this study, the authors present
a new RF fingerprinting scheme using deep neural networks. In par-
ticular, a long short-term memory based recurrent neural network is
proposed and used for automatically identifying hardware-specific
features and classifying transmitters. Experimental studies using
identical RF transmitters showed very high detection accuracy in the
presence of strong noise (signal-to-noise ratio as low as −12 dB) and
demonstrated the effectiveness of the proposed scheme.
Introduction: ‘RF fingerprinting’ generally refers to the process of
identifying the unique characteristics of a wireless transmitter hardware
imposed on the transmitted signals. RF fingerprinting can be used to
effectively prevent node impersonation, in which legitimate security cre-
dentials are obtained by an adversary to compromise the security [1].

Many hardware-dependent features have been explored for RF finger-
printing. These features exist due to variations in the manufacture
process of wireless transmitters. These variations are small enough
to meet the requirements of communication standards but allow for
unique device-dependent features to be identified. Examples of such
features include the turn-on transient phase of the signals [2, 3],
power amplifier imperfections [4, 5], magnitude and phase errors, I/Q
dc offset [6], carrier frequency differences, phase offset, and
second-order cyclostationary features [7], clock offset [8].

Existing fingerprinting algorithms include white-list based algorithms
and unsupervised learning based algorithms. The former requires
legitimate devices to register and training a prior to setup a database
for their feature space. The latter does not require such prior knowledge,
and as such does not differentiate legitimate features from illegitimate
ones. Both methods are useful in detecting and identifying spoofing.
However, all existing works on RF fingerprinting depend on a set of
human engineered features from various layers of the protocol stack
[1]. In this work, we will demonstrate that deep neural networks can
be used to effectively implement device identification with high accu-
racy through automatic learning of device-dependent RF fingerprints.
In contrast to existing works, the proposed approach does not require
human intervention in defining what features should be used in the
RF fingerprinting process.

Recurrent neural networks (RNNs) for RF fingerprinting: Unlike
standard feedforward neural networks, RNNs are neural networks that
can present the dynamics of sequences using cycles within the
network so that they retain a state that capture information from an
arbitrarily long context window. Therefore, RNN models are especially
suitable for sequence data. Traditionally, RNNs with millions of
parameters were difficult to train. Recently, long short-term memory
(LSTM) architecture has been developed to successfully address the
problem of the vanishing gradients for RNNs [9]. LSTM systems
have demonstrated ground-breaking performance on tasks with
sequence data, including speech recognition [10], POS tagging [11],
parsing [12], among many others.

Simple RNNs have long-term memory in the form of weights which
change slowly during training, encoding general knowledge about the
data. In ‘LSTM’ RNNs, short-term memory also exists in the form of
ephemeral activations passing from each node to successive ones.
Therefore, we expect LSTM would capture types of features that are
long term, such as frequency drift, and features that are short term,
such as the ramp-up trend in the initial sequence.

The LSTM architecture is made of a group of recurrently connected
unit subnetworks, known as memory blocks. Each memory block con-
tains one or more self-connected memory cells and three multiplicative
units, the input, output and forget gates, that provide perform write, read
and reset operations for the cells.

Fig. 1 shows a single LSTM memory cell. The multiplicative gates
allow LSTM memory cells to retain information over long periods of
time. This solves the problem of vanishing gradient during training.
For example, the activation of the cell will not be overwritten by the
new inputs as long as the input gate remains closed. By opening the
gate at a much later time, the cell can be made available to the net
much later in the sequence.
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Fig. 1 Long short-term memory cell

Given an input x = (x1, . . . , xT ), the hidden vector h = (h1, . . . , hT )
and output vector y = (y1, . . . , yT ) are calculated by the following itera-
tive equations from t = 1 to T in a conventional RNN:

ht = H(Wxhxt +Whhht−1 + bh),

yt = Whyht + b0,

where the W terms present weight matrices, the b terms present bias
vectors, and H the hidden layer function. H is usually an element
wise application of a sigmoid function. Each memory cell contains a
node with a self-connected recurrent edge of fixed weight one to
ensure that the gradient can pass across multiple time steps without
vanishing or exploding.

Based on its unique features, we anticipate that LSTM-based RNN
should be a suitable choice for RF fingerprinting applications. Unlike
the existing literatures on RF fingerprinting, this approach does not
use human-engineered features.

Data collection: To collect the necessary training and evaluation data,
we conducted transmission/reception experiments using seven identical
National Instruments USRP software defined radio modules (model
USRP-2900) (six as transmitters and one as receiver). In each experiment,
the transmitter and the receiver are connected by an RF test cable to have a
well-controlled signal-to-noise ratio (SNR). Random data is generated and
packaged into a WiFi-like packet before being sent to the transmitter.
Single-carrier (925MHz) QPSK modulation is used in this study.
Gaussian noise is added to the received signal to simulate the degradation
of the SNR due to channel loss and external and system noise (Fig. 2).
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Fig. 2 Experimental setup for training and evaluation data collection in the
preliminary study

In the experiments, each transmitter sends a total of 6000 packets,
where each packet contains 250 symbols (500 bits). The receiver’s
analogue-to-digital (ADC) converter over-samples at 12 times the bit
rate and results in 6000 samples per packet.



Baseband inphase (I) and quadrature (Q) samples are collected from
the receiver. A subtle but important question is whether some level of
physical layer correction should be implemented at the receiver. In a
typical digital communication receiver, carrier frequency and phase
recoveries are usually performed in order to synchronise the local
oscillators (LO) of the receiver to that of transmitter. However, the
current RF fingerprinting literature suggests that imperfect transmitter
LO signal characteristics are a major part of hardware-specific finger-
print signatures. As such, the frequency and phase synchronisation
may remove important features from the received data. Therefore, in
our experiments, I/Q data is collected at the output of the ADC,
before any matched filtering or carrier recovery is performed.

Model training: In this work, the hidden layer function H of an LSTM
block is implemented as follows:

it = s(Wxixt +Whiht−1 +Wcict−1 + bi),

f t = s(Wxf xt +Whf ht−1 +Wcf ct−1 + bf ),

ct = f tct−1 + it tanh (Wxcxt +Whcht−1 + bc),

ot =
∑

(Wxoxt +Whoht−1 +Wcoct + bo),

ht = ot tanh (ct),

where s is the logistic sigmoid function, and i, f, o, and c are,
respectively, the input gate, forget gate, output gate, and cell activation
vectors, all of which are the same size as the hidden vector h. Whi is the
hidden-input gate matrix, Wxo is the input-output gate matrix. The
weight matrix from the cell to gate vectors (e.g. Wci) are diagonal, so
element m in each gate vector only receives input from element m of
the cell vector. The bias terms have been omitted for clarity.

The collected data/samples are divided into sequences of one packet
per sequence. The collection of data is divided into a training dataset
(80%) and an evaluation dataset (20%). Using these data, we train an
RNN with one hidden layer of 50 LSTM cells and 1 softmax output layer.

Performance: Although the trained LSTM model has a relatively
simple structure, its effectiveness in classifying the transmitters in the
presence of strong noise and interference is surprisingly high.
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Fig. 3 Model PD of the preliminary study using a simple LSTM network
versus

a Over-sampling ratio and number of training sequences
b I/Q data
c SNR
d Signal-to-interference ratio (SIR). Red lines in each sub-plot indicates the
PD = 0.95 level

Fig. 3a shows the probability of detection (PD) of the classification for
various effective over-sampling ratio and number of sequences used in
the training. Above 95% PD is achieved for as low as 1000 sequences
(packets) and an over-sampling ratio of 2 (1000 samples per packet).
As expected for deep learning models, the performance improves as
we increase the training data size. For all over-sampling ratios, PD is
greater than 0.99 with 6000 training sequences. We have not observed
a significant performance difference with respect to whether I, Q, or
both data is used (Fig. 3b).

Fig. 3c shows the performance with respect to the SNR. As expected,
a degradation in SNR results in a degradation in PD. The loss in
accuracy can be partially recovered by increasing the number of training
steps. At 4000 training steps, the model remains surprisingly accurate
with PD . 95% at an SNR of −12 dB. As the number of training
steps is further increased, we start to observe overfitting of the model
and a degradation in PD.

The LSTM model is also very resilient to interference with PD .0.9
at an SIR of 3 dB (Fig. 3d. Here, we emulate the effect of interference by
adding to a sequence x[n] of transmitter i a scaled version of a random
sequence y[n] of a random transmitter j = i, i.e. x′[n] ⇐ x[n]+ ay[n].
The scaling factor a is varied to give an effective SIR between −3
and 17 dB.

Conclusion: In this work, we present a deep neural network based RF
fingerprinting scheme for wireless device identification and wireless
security applications. We propose an LSTM based RNN model that
effectively captures the long-term and short-term hardware-specific fea-
tures of a wireless transmitter. We validated the effectiveness of the pro-
posed scheme by experimentally showing very high detection accuracy
in the presence of strong noise and interference. This first work opens up
the door to follow-on studies that will further improve the effectiveness
of the proposed scheme.
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