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ABSTRACT 11 

In agriculture, Unmanned Aerial Vehicles (UAVs) have shown great 12 

potential for plant protection. Uncertain obstacles randomly distributed 13 

in the unstructured farmland usually pose significant collision risks to 14 

flight safety. In order to improve the UAV’s intelligence and minimize 15 

the obstacle’s adverse impacts on operating safety and efficiency, we put 16 

forward a comprehensive solution which consists of deep-learning based 17 

object detection, image processing, RGB-D information fusion and Task 18 

Control System (TCS). Taking full advantages of both deep learning and 19 

depth camera, this solution allows the UAV to perceive not only the 20 

presence of obstacles, but also their attributes like category, profile and 21 

3D spatial position. Based on the object detection results, collision 22 

avoidance strategy generation method and the corresponding calculation 23 
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approach of optimal collision avoidance flight path are elaborated 24 

detailly. A series of experiments are conducted to verify the UAV’s 25 

environmental perception ability and autonomous obstacle avoidance 26 

performance. Results show that the average detection accuracy of CNN 27 

model is 75.4% and the mean time cost for processing single image is 28 

53.33ms. Additionally, we find that the prediction accuracy of obstacle’s 29 

profile and position depends heavily on the relative distance between the 30 

object and the depth camera. When the distance is between 4.5m and 31 

8.0m, errors of object’s depth data, width and height are -0.53m, -0.26m 32 

and -0.24m respectively. Outcomes of simulation flight experiments 33 

indicated that the UAV can autonomously determine optimal obstacle 34 

avoidance strategy and generate distance-minimized flight path based on 35 

the results of RGB-D information fusion. The proposed solution has 36 

extensive potential to enhance the UAV’s environmental perception and 37 

autonomous obstacle avoidance abilities. 38 
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1. Introduction 42 

Over the past few years, UAVs, also known as drones, are no longer 43 

exclusively associated with military and defense applications, but have 44 

been successfully applied in many civilian fields(Floreano et al., 2015), 45 

including power-line inspection, rescue aid, crop surveillance (Fernando 46 

et al., 2018), crop yield assessment (Feng et al., 2020) and plant protection 47 

(Tetila et al., 2020). Plant protection, especially pests and diseases control 48 

through spraying pesticide (Ahmad et al., 2020; Liao et al., 2019; Xu et al., 49 

2019), is an important link in the process of agricultural production. 50 

Compared with tradition ground-walking plant protection equipment, 51 
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UAVs have distinct advantages in terms of flexible-terrain-adaptability 52 

and high-efficiency (Xue et al., 2016). Currently, with the help of some 53 

conventional sensors, reliable control algorithms and obstacle’s location 54 

information measured in advance, UAVs have already been able to 55 

autonomously perform specific tasks along detected or preset flight routes 56 

(Basso et al., 2020; Yang et al., 2019). However, there are many unknown 57 

obstacles in the unstructured farmland environment, some of them are 58 

stationary, others are dynamically moving, which could pose rigorous 59 

challenges to the drone’s active cognitive ability. So far, it remains a great 60 

challenge to endow the UAV with certain environmental perception and 61 

obstacle avoidance abilities so that it can automatically generate the 62 

optimal collision avoidance strategy and trajectory according to obstacle’s 63 

specific category, profile and 3D spatial position. 64 

Common challenges in all kinds of applications of UAVs are safety and 65 

automation. Many researchers and engineers are committed to eliminating 66 

these concerns and making them capable of satisfying the individual 67 

requirements on different occasions (Adrian et al., 2020). The top priority 68 

for flight safety is that the drones are capable to sense and understand the 69 

surrounding environment proactively. The most intuitive way to achieve 70 

environmental perception is to obtain as much detailed environmental 71 

information as possible. Generally, some common sensors, such as radar, 72 

LiDAR, ultrasonic, and infrared rangefinders, have been widely used on 73 

UAVs to detect the existence and distance of obstacles (Jongho et al., 74 

2020). However, given inherent limitations like resolution, sensing range 75 

and light sensitivity, they can only provide very rough information to 76 

UAVs. In addition, monocular cameras are also commonly used on drones. 77 

Combined with image processing technology, they can help drones 78 

understand the environment in RGB space. But light sensitive and time-79 
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consuming features limit their performance in outdoor applications. 80 

Therefore, the lack of knowledge of ambient properties leads to the 81 

mismatch between UAV autonomous flight ability and real demand. In the 82 

wake of the development of sensors integration and image processing 83 

technologies, RGB-D cameras are becoming affordable and applicable for 84 

robots to sense the world in higher dimensions. Recently emerged RGB-85 

D cameras like Intel RealSense D435, with visible features of lightweight, 86 

high accuracy and light insensitivity, display great potentials to be an 87 

effective means to sense flight scenarios. Besides of three channels of 88 

RGB information, RGB-D cameras present an extra channel of depth 89 

information, which makes it possible to obtain obstacle’s color, profile and 90 

position features simultaneously. However, how to promptly and 91 

effectively extract the most useful information from all features remains a 92 

huge challenge. In recent years, some state-of-the-art Convolutional 93 

Neural Networks (CNN) and object detection algorithms have been 94 

proposed as the prosperity of deep learning (Yann et al., 2018). For 95 

example, in terms of classification accuracy and inference speed, YOLO 96 

(Redmon et al., 2018) and SSD (Liu et al., 2016) have shown high 97 

performance in the field of object detection. Therefore, it would be a wise 98 

strategy to extract obstacle’s attributes by combining the deep learning 99 

algorithms and RGB-D cameras. Many researchers have focused on 100 

improving the object detection accuracy by fusing all the information from 101 

four channels (Loghmani et al., 2019; Zia et al., 2017). For instance, Single 102 

Stream Recurrent Convolution Neural Network (SSRCNN) and Depth 103 

Recurrent Convolution Neural Network (DRCNN) to detect and render 104 

salient object for RGB-D images were put forward (Liu et al., 2019). 105 

Evaluations on four datasets demonstrated that the presented method is 106 

excellent in discriminating depth feature and fusing RGB and depth 107 
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information. Existing studies mainly use depth information to improve 108 

classification accuracy. However, in agriculture, there are no reports about 109 

the implementation of deep learning and depth cameras on drones to sense 110 

the multi-dimensional attributes of obstacles. 111 

As for the automation of UAVs, two important contents are autonomous 112 

navigation and obstacle avoidance. Global Positioning System (GPS) 113 

usually plays a vital role in navigation systems which guide UAVs with 114 

accurate spatial position coordinates. However, GPS signals could be 115 

weak or totally lost in some scenarios like urban areas, low altitude flights 116 

or indoor operations (Mohta et al., 2018; Perez-Grau et al., 2018). Based 117 

on the automatic navigation system, in order to ensure the efficiency and 118 

effectiveness, it is necessary to discuss the subject about how to generate 119 

and determine the most appropriate strategy to circumvent obstacles with 120 

their individual properties in mind. There are various optimization 121 

algorithms with different advantages and disadvantages for flight path 122 

planning (Shao et al., 2018). However, even with the applications of 123 

navigation systems, high-performance sensors and flight path optimization 124 

algorithms, it is still challenging for UAVs to reliably perceive the 125 

surrounding environment and autonomously navigate between target 126 

locations. Furthermore, it becomes more difficult to avoid unknow 127 

obstacles with only little or even no prior knowledge of the operating 128 

environment. 129 

Aiming at promoting the application of UAVs in the field of plant 130 

protection, we develop a novel solution which would be helpful to further 131 

ensure operating safety and efficiency by improving the level of 132 

intelligence and automation. Contributions of this research can be 133 

summarized as follows: 134 
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a) A comprehensive solution which consists of deep-learning based 135 

object detection, image processing, RGB-D information fusion 136 

and task control system is proposed to enhance the UAV’s abilities 137 

of environmental perception and autonomous collision avoidance. 138 

b) Combining deep learning with depth camera, we put forward a 139 

method of RGB-D information fusion. Based on this, the UAV not 140 

only can sense the existences of obstacles, but also able to perceive 141 

what and where they are. 142 

c) Taking single tree for example, the generation approach of specific 143 

obstacle avoidance strategy and the corresponding flight path 144 

planning method are elaborated on the basis of the obstacle’s 145 

attributes. 146 

d) A customized dataset is built to train and evaluate the CNN model 147 

with YOLO V3 object detection algorithm. 148 

2. Materials 149 

2.1. Dataset 150 

Since there is no existing open-source dataset containing the specific 151 

obstacles distributed in farmland, we establish our own dataset by 152 

combining the means of searching online and filming in field. The dataset 153 

contains 3,700 samples that can be classified into five categories, i.e., 154 

person, tree, building, power line/tower and drone. Each category accounts 155 

for the same proportion. For the sake of training CNN model with 156 

supervised learning, the categories and bounding boxes of each sample are 157 

manually labelled in advance. Because that the inconsistence of image size 158 

may cause adverse impact on the model training process, all samples are 159 

cropped to the unified resolution of 416×416 before annotating the target 160 

objects. Furthermore, the dataset is divided into two parts: the training set 161 

and the validation set, which contains 3,000 and 700 samples respectively. 162 
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2.2. Workstation 163 

The training and testing processes of the CNN model are implemented 164 

on our workstation whose operating system is Ubuntu 16.04 LTS. The 165 

major specifications of the workstation are as follows: GPU: NVIDIA 166 

GTX1080; CPU: Intel Core i7-8700k; RAM: Corsair 16G; Hard Disk: 167 

Samsung SSD 500G. Within the PyCharm developing environment, we 168 

build the CNN architecture with TensorFlow computational framework in 169 

Python programming language. In addition, the object detection algorithm 170 

runs on the GPU which has been configured with CUDA 9.0 parallel 171 

programming platform and CuDNN 7.1 accelerating package.  172 

2.3. Simulation environment 173 

A simulation environment, which is composed of Intel RealSense SDK, 174 

virtual UAV, ArduPilot, QGroundControl, TCS and customized scripts, is 175 

built in the Ubuntu 16.04 LTS operating system. With the help of multiple 176 

useful packages, such as ROS, MAVROS, OpenCV, etc., customized 177 

scripts are developed for acquiring and optimizing color and depth images, 178 

running deep learning algorithms, generating the optimal avoidance 179 

strategy, planning flight path and dispatching multi-point flight tasks and 180 

obstacle avoidance procedures. In addition, the ground control station 181 

named as QGroundControl is employed to observe and record real-time 182 

flight parameters and to monitor the executing processes of the flight 183 

missions. It is worth noting that the flight control program running on the 184 

workstation can be directly transplanted to the flight controller without any 185 

modification by right of the hardware compatibility of ArduPiot. This 186 

means that the simulation results can effectively represent the actual 187 

situation without considering the environmental parameter interference. 188 

3. Systems and methods 189 
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The first part of this section presents an overview of our proposed 190 

solution. In the subsequent six parts, the methods of object detection, depth 191 

data extraction, RGB-D information fusion, obstacle avoidance strategy, 192 

flight path planning and autonomous flight control are introduced 193 

respectively. 194 

3.1. Overall solution 195 

In order to grant the UAV with certain environment perception and 196 

collision avoidance abilities and ensure its flight safety, we propose an 197 

overall solution which is shown as Fig. 1.  198 

An Intel RealSense D435 mounted on the UAV is employed to sense 199 

the world by simultaneously capturing color and depth images of the flight 200 

scene. First, the color image is fed into CNN which has been trained based 201 

on our customized dataset to obtain the potential obstacle’s classification 202 

and bounding box. Then, mapping the results of object detection on the 203 

optimized depth image to extract the obstacle’s profile and 3D spatial 204 

information. By fusing the outcomes of object detection and the extracted 205 

depth information, the UAV can determine the optimal avoidance strategy 206 

and calculate the distance-minimized obstacle avoidance trajectory 207 

according to the obstacle’s unique attributes like category, profile and 208 

position. Finally, with our novel TCS and customized scripts，the UAV 209 

can execute straight-line flight task between multiple task-points while 210 

avoiding obstacles autonomously.  211 

 212 
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FIGURE 1. An overview of environmental perception and obstacle avoidance solution.  213 

3.2. Object detection 214 

In this study, YOLO V3 (Redmon et al., 2018), one of the state-of-the-215 

art CNN models, is employed to detect the obstacle’s category and 216 

bounding box. YOLO V3 with the darknet-53 backbone, consists of 75 217 

convolutional layers. And, to non-linearize the model while avoiding 218 

overfitting, each one except the last three convolutional layers is followed 219 

by Batch Normalization and Leaky_ReLU activation function. By means 220 

of up-sampling and concatenation, YOLO V3 can output three feature 221 

maps with different scales and the best one would be selected according to 222 

the size of potential obstacle for further classification prediction and 223 

bounding box regression. Besides, it is especially suitable for occasions 224 

with high real-time requirements due to its fast detecting speed and 225 

relatively high detecting accuracy.  226 

Generally, the larger capacity of the dataset has, the less likely the 227 

overfitting will occur, and the better generalization and robustness of the 228 

model will be. However, due to overwhelming time and effort cost, it is 229 

difficult to have relatively abundant samples with pre-known annotations 230 

which may limit the improvement of the detection accuracy of the CNN 231 

model to some extent. Transfer learning (Weiss et al., 2016) could be 232 

adopted to facilitate the convergency speed and improve the model’s 233 

robustness especially when the customized dataset is similar or partially 234 

overlapping with the open-source dataset. Official YOLO V3 was trained 235 

based on the COCO dataset (Lin et al., 2014) which contents more than 80 236 

classes among which is the PERSON class. Therefore, the official weights 237 

were utilized in the training process of the model involved in this research 238 

to improve its predication accuracy and convergency speed. 239 
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The training process is separated into two steps. First, import the official 240 

pre-trained weights and freeze the last three convolutional layers, iterate 241 

200 epochs with the initial learning rate of 10-3 and batch size of 32. Next, 242 

unfreeze the last three convolutional layers, iterate 200 epochs again with 243 

the initial learning rate of 10-4 and the batch size of 8 to finetune the model. 244 

During the training process, we use ReduceLROnPlateau callback 245 

function to multiply the learning rate by a constant of 0.5 as long as the 246 

training loss stops to decline in 10 consequent iterations. Meanwhile, the 247 

Tensorboard callback function is applied to dynamically observe and save 248 

the model parameters 249 

3.3. Depth information extraction 250 

To eliminate noises, data of depth image has been optimized by Spatial 251 

Edge-Preserving Filter and Holes Filling Filter (referred to the Intel 252 

RealSense SDK 2.0) before depth information extraction. Considering that 253 

the gray value of each pixel of the depth image is linearly related to the 254 

distance, then the concrete distance between the target object and the 255 

camera can be extracted by picking the gray value of the pixel at the 256 

specific position. Based on the method of object detection elaborated in 257 

section 3.2, the most intuitive and reliable position is the center of 258 

bounding box (expressed as Pc below). In some cases, taking the depth 259 

data at Pc as the desired distance could be practical. However, taking into 260 

account the uncertainties of object’s attribute as well as environmental 261 

condition, there are some undesirable cases in which the bounding boxes 262 

are larger, smaller, offset or even failed (as shown in Fig.2). In addition, 263 

one of the limits of YOLO V3 is that it can only output rectangular 264 

bounding box. This means that it is sensitive to image distortion. While, as 265 

the RGB-D camera is mounted on the UAV, object can be slanted in the 266 

color image because of the dynamic change of the UAV’s attitude. In this 267 
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case, depth data at Pc could become unreliable or even invalid. To remedy 268 

this defect, we pay additional attention to the object’s gravity center, 269 

expressed as Pg, by performing local image processing on the area 270 

surrounded by the bounding box. 271 

 272 

(a) (b) (c) 

FIGURE 2. Three scenarios demonstrating the relative position between Pc and Pg. (a) 273 
Normal case. (b) The predicted bounding box of the object slants in image. (c) The 274 
bounding box is larger than the one in ideal case. From top to bottom, they are color 275 
images, depth images, gray images inside the bounding boxes and binary images with 276 
contours of object. The blue point and red point in binary image indicate Pc and Pg 277 
respectively. 278 

This study customizes a specific strategy to improve the accuracy and 279 

reliability of the depth information acquisition considering the differences 280 

of Pc and Pg. This strategy is detailed as follows: when the variation of two 281 

points in both height and width directions under image pixel coordinates 282 

is less than 5 pixels, the average depth data at Pc and Pg will be considered 283 

as the true value; when the variation surpasses 5 pixels, the depth data at 284 

Pg will be seen as the real value; when the extraction of Pg fails, the depth 285 

data at Pc is regarded as the real value; when the depth data at Pc is void, 286 
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then, the average value of all valid data on horizontal centerline of the 287 

bounding box will be adopted. 288 

3.4. RGB-D information fusion 289 

In order to simplify the calculation process, we establish three 290 

assumptions: (i). the intrinsic parameters of the camera are pre-known; (ii). 291 

the imaging plane of the camera is parallel to the scene plane of the object; 292 

(iii). the optical axis is inward through the center of the image plane. Under 293 

the above assumptions, the real-scene spatial coordinate information of 294 

any point selected from the image plane can be calculated following (1). 295 

This formula is derived from the principle of pinhole imaging.  296 
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where, z is the vertical distance between the scene and the camera; f is the 297 

focal length of the color camera; px is the number of pixels in the horizontal 298 

direction of the image plane relative to the optical axis; py is the number of 299 

pixels in the vertical direction; ps is the physical size of pixels of the color 300 

camera; xs, ys, and zs are the spatial coordinates of the specific point in real 301 

scene plane. 302 

After obtaining the coordinates of each vertex of the bounding box, the 303 

width and height of the object could be obtained following (2). 304 

𝑤 |𝑥 𝑥 |
ℎ |𝑦 𝑦 |

 (2) 

where, w0 is the width of the object; xur is the X-axis of upper-right vertex 305 

of the bounding box; xul is the X-axis of upper-left vertex; h0 is the height 306 

of the object; yll is the Y-axis of lower-left vertex; yul is the Y-axis of upper-307 

left vertex. 308 

3.5. Obstacle avoidance strategies 309 
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Exclusive and specific collision avoidance strategies should be adopted 310 

according to the results of object detection and RGB-D information fusion 311 

since different kinds of obstacles pose distinct extents of risks to drone’s 312 

flight safety. Environmental sensing method based on deep learning and 313 

the Intel RealSense D435 depth camera can simultaneously perform object 314 

detection and 3D information acquisition. However, because of light 315 

condition change, obstacle’s attribute difference, and the depth camera’s 316 

measurement range limit, there are some situations in which the target 317 

category and depth information cannot be acquired at the same time. The 318 

detailed analysis is as follows: 319 

If there are no obstacles on the flight path or the obstacles are far away, 320 

no information will be obtained through object detection and RGB-D 321 

information fusion. When some obstacles appear ahead, but the distances 322 

exceed the depth camera’s sensing range, then, only their categories would 323 

be available. When the distances are within the sensing range and the main 324 

contours of these obstacles can be presented within the field of view (FOV), 325 

then, their categories, spatial positions, and profiles can be obtained 326 

through our solution simultaneously. When obstacles are too close that 327 

their images completely fill the FOV, the distance information from depth 328 

image could be unreliable, and it is usually difficult to identify their 329 

categories.  330 

The FOV is delimited into four parts which could be listed from far to 331 

near as clear area, warning area, action area and emergency area, as shown 332 

in Fig.3. In detail, clear area means there are no obstacles in front, and it is 333 

safe to keep flying with current flight parameters; in warning area, the 334 

drone can sense potential collision risks ahead, but has no knowledge of 335 

where it is, it just remembers the category of the potential obstacle and 336 

reduces flight speed if necessary; the action area is defined as the region 337 
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where the drone would take specific obstacle avoidance actions according 338 

to concrete attributes of obstacles; if the obstacle appears in emergency 339 

area, the drone would stop and hover at current position immediately and 340 

wait for the intervention by pilot. 341 

 342 

FIGURE 3 FOV division result considering the sensing range limit of depth camera 343 
and the outcomes of object detection. 344 

In this section, we define some optimal collision avoidance strategies in 345 

advance according to the results of object detection when obstacles are in 346 

action area. In detail, for short small trees or buildings, the drone will not 347 

adjust flight direction, only change flight altitude to cross the obstacle; for 348 

tall and large trees or powerline poles/towers, it will turn left or right to 349 

avoid obstacles while maintaining current flight altitude; when a person or 350 

drone appears on the drone's flight path, it will immediately hover at 351 

current position and send alarming messages to the pilot.  352 

Scattered trees in the field are the most common obstacles causing 353 

collisions risks for the drone. Therefore, taking a single tree as example, 354 

we explicitly illustrate a method about how to calculate the relative 355 

position between the tree and drone and then predict the optimal collision 356 

avoidance strategy in the light of the results of objection detection and 357 

RGB-D information fusion. As shown in Fig.4, an image plane is 358 
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represented by a rectangular which has been split into four quadrants 359 

homogeneously. We set the origin of image coordinate system (Xi, Yi) at 360 

the upper left vertex of the image, while the origin of UAV’s body 361 

coordinate system (Xd, Yd, Zd) at the center. The positive direction of Xd is 362 

consistent with Xi, and Zd points to the negative direction of Yi. Yd, identical 363 

to the forward flight direction of UAV, is indicated by the vertical inward 364 

at the image center. The red dotted rectangular with side length of 2m is 365 

deemed to be the minimum safely-passing-area. 366 

 367 

FIGURE 4 Principles for selecting obstacle avoidance strategies according to the 368 
location of the object’s bounding box in the image coordinate system. The red arrows 369 
denote the flight direction according to the corresponding collision avoidance 370 
strategies, while the cross sign indicates a risk-free obstacle. dx is the relative distance 371 
between the left (or right) boundary of minimum safely-passing-area and right (or left) 372 
boundary of bounding box; dz is the relative distance between the lower boundary of 373 
minimum safely-passing-area and upper boundary of bounding box. Both dx and dz 374 
present the relative position in UAV’s body coordinate system. 375 

When the center of the bounding box of a tree locates in the upper-left 376 

area, then the distance between the bounding box’s right border and the 377 

safely-passing-area’s left border, marked as dx, can be extracted according 378 

to (1). If dx is positive, the UAV would ignore the existence of tree and 379 
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continue to execute flight mission with the current flight parameters. If dx 380 

is negative, the UAV would turn right with a certain distance to detour the 381 

tree. Similar obstacle avoidance strategy is also applicable when the center 382 

of the bounding box is in upper-right area. When the center of the bounding 383 

box is in lower-left area, the dz which represents the distance between the 384 

bounding box’s top border and the safely-passing-area’s bottom border 385 

would also be calculated. If it is positive, the drone would pass directly, 386 

otherwise, the dx would be regarded as the main basis for determining 387 

whether there are collision risks or not. When dx is positive, then the 388 

obstacle is beyond the safely-passing-area. If dx and dz are both negative, 389 

the UAV would leap forward with a certain distance to bypass the tree. 390 

Similar obstacle avoidance strategy is also applicable to the circumstance 391 

in which the bounding box center locates in lower-right area. It is worth 392 

noting that although the horizontal displacement and leap forward obstacle 393 

avoidance strategies are applicable when the boundary box of the obstacle 394 

locates in the lower area of the image plane, we still prefer the leap forward 395 

strategy. The main reason is it generates much less instability comparing 396 

with horizontal displacement strategies. This benefits from the fact that 397 

leap forward strategy only involves the change of flight altitude, but not 398 

has the change of attitude which is the main cause of the sway of pesticide 399 

solution in the tank. dx and dz are two important parameters for flight path 400 

planning (described in detail in 3.6), which represent horizontal and 401 

vertical displacement respectively. 402 

We present two examples in Fig.5. The first example demonstrates the 403 

predicted bounding box center located at the upper-left area. The 404 

orientation of the red line suggests that turn-right collision avoidance 405 

strategy is adopted, and the closer the tree is to the drone, the longer the 406 

red line is. The second instance indicates the case in which the tree locates 407 
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at the lower-right area and the leap forward collision avoidance strategy 408 

should be executed.  409 

 410 

FIGURE 5 Specific obstacle avoidance strategies in two example scenarios where the 411 
centers of predicted bounding boxes located at upper-left and lower-right area in the 412 
image coordinate system respectively.  413 

3.6. Flight path planning 414 

After the obstacle avoidance strategy have been explicated, the next 415 

question is how to generate an optimal collision avoidance trajectory to 416 

minimize the adverse impact on the effectiveness and efficiency of the 417 

drone. Figure.6 depicts how to calculate the offset under three 418 

circumstances in which right turn, left turn and leap forward detouring 419 

strategies are needed to be implemented respectively. 420 

To make it clear, in this section we take the left turn obstacle avoidance 421 

strategy to avoid a single tree as an example. Geodetic coordinate system 422 

and UAV airframe coordinate system are established separately in order to 423 

describe the relative position between the UAV and the tree. The origin of 424 

the geodetic coordinate system Oe is located at the starting point of the 425 

UAV's flight task, with Xe pointing to the East and Ye pointing to the North. 426 

The origin of the UAV's airframe coordinate system is located at the center 427 

of gravity, as Xd representing the right side of the UAV and the Yd pointing 428 

to the forward flight direction. Both Ze and Zd are coincident with the 429 
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direction of increasing altitude. In order to simplify the generation of 430 

collision avoidance path and clearly illustrate the method of calculating the 431 

coordinates of task-points, we proposed some hypothesis or 432 

preconditions:(i). The obstacles exist independently; (ii). The outer 433 

contour of the cross section of the obstacle is round; (iii). The starting 434 

position of obstacle avoidance task is 2m away from the obstacle; (iv). 435 

Following the principle of minimizing the total distance during obstacle 436 

avoidance task. 437 

As shown in Fig.6-a, supposing that the drone is performing a multi-438 

task-points straight-line flight mission in the direction of OeP0. When it 439 

reaches point P0, the single tree enters the action area where its 440 

classification, height, width and position can be obtained at the same time. 441 

Then point P1(x1, y1, z1) that is 2m from the tree is defined as the starting 442 

point of the obstacle avoidance task. In addition, the coordinates of P2 (x2, 443 

y2, z2) and P3 (x3, y3, z3) could be computed following (3) and (4) which are 444 

derived through geometric relations. Based on the straight-line flight 445 

capability, the UAV performs obstacle avoidance trajectories composed of 446 

P0, P1, P2, and P3, and resumes the straight-line flight mission after the 447 

obstacle avoidance mission is completed. Similarly, the coordinates of P2 448 

and P3 can be obtained following (5)-(6) or (7)-(8) when it is needed to 449 

execute right-turn or leap forward collision avoidance strategies. The 450 

corresponding collision avoidance paths are shown as Fig.6-b and Fig.6-c. 451 
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FIGURE 6 Geometric analysis for generating the avoidance paths when taking left turn 453 
(a), right turn (b) and leap forward (c) avoidance strategies. 454 

3.7. Autonomous flight control method 455 

For the sake of maintaining the expansion flexibility of the entire flight 456 

control system without compromising its reliability and stability, the two-457 

tier control system including a companion computer and a flight control 458 

system is proposed. Companion computer running ROS acts as the main-459 

controller and flight control system acts as the sub-controller. Specifically, 460 

the main-controller with abundant peripheral interfaces is responsible for 461 

executing high-level control procedures such as real-time data acquisition, 462 

image processing, inference of CNN, and generation of attitude and 463 

position control commands for the UAV. It communicates with other 464 

devices that support ROS through the mechanisms of Topic and Service. 465 

Due to the sustainable contribution from the open-source community, 466 

ArduPilot has been proved to be a reliable flight control firmware for the 467 

innovation and implementation of personalized application based on the 468 

UAV platform. The sub-controller companioned with ArduPilot, as an 469 

independent flight controller, adjusts the drone’s attitude according to the 470 

commands received from main-controller, ground-station or remote 471 

controller via messages in MAVLINK protocol and broadcasts its real-472 

time state parameters in the opposite direction. MAVROS acts as a bridge 473 

connecting companion computer and flight controller by shouldering the 474 

responsibility to do bidirectional conversion between ROS and 475 

MAVLINK messages. This autonomous flight control method integrates 476 

the flight control system, companion computer and Intel RealSense D435 477 

into a seamless system.  478 

In this work, we focus on the spatial position control of the UAV by 479 

sending corresponding commands and 3D position coordinates to the 480 
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flight controller who completes attitude control through bottom driver. In 481 

order to simplify the flight task, we divide it into four independent subtasks: 482 

takeoff, flight straightly towards the task point, hover for a specific time 483 

and autonomous landing. A common flight mission can be generated by 484 

freely combining these four subtasks. Based on ROS and MAVROS, the 485 

flight mission management system, we called TCS, is developed. It not 486 

only assumes the duty of maintaining the stability of communication inside 487 

the two-tires control system but also completes the scheduling of different 488 

flight missions by continuously querying the execution progress of each 489 

subtask and the entire task. 490 

4. Experiments and Results 491 

The contents of our experiments are composed of three sections. Firstly, 492 

an experiment was conducted to evaluate the performance of the obstacle 493 

detection CNN model with the validation dataset. Secondly, to assess the 494 

sensing range of depth camera and the predication accuracy of objects 495 

profile and 3D spatial position, a real-world test was carried out. Thirdly, 496 

we launched an experiment that combines simulation environment with 497 

real object to examine the UAV’s comprehensive capacities, including 498 

environmental perception, obstacle avoidance and autonomous flight. 499 

4.1. Performance of CNN model  500 

Object detection accuracy, interference speed and generalization ability 501 

are three important indicators that reflect the performance of the CNN 502 

model. For our proposed solution, both the classification accuracy and 503 

bounding box predication accuracy influence the precision of RGB-D 504 

information fusion directly. In this study, we use Detection Accuracy (DA) 505 

which represents the product of the two to assess the performance of the 506 

CNN model.  507 
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We launched a series of repeated experiments with the validation dataset 508 

to evaluate the detection accuracy as well as to assess the interference 509 

speed. The details of test results are present in Tab. 1. Results suggest that 510 

the average precision (AP) of each category exceeds 90% except Power-511 

line Pole/Tower. This is because we classified power-line poles and 512 

power-line towers into the same category, although there are significant 513 

differences in their shape features. Nevertheless, the mAP (means of APs) 514 

of the five classes reaches 91.9% which shows that the CNN mode has 515 

strong generalization ability. DA of each category is 74.3%, 77.8%, 66.0%, 516 

72.2% and 86.9% respectively. The average DA of the five categories is 517 

75.4%. Additionally, the average time cost for detecting single image is 518 

about 53.33ms which means it can update the results of environmental 519 

perception to the drone more than 18 times per second without considering 520 

the communication delay.  521 

Figure 7 shows some object detection results in the validation dataset. It 522 

can be found that the predicted bounding boxes can surround the obstacles 523 

precisely with high confidences. 524 

Table 1 Results of object detection tests  525 

 Person/% Tree/% 
Power-line 

Pole/Tower/% 
Building/% Drone/% 

AP 92.4 92.2 87.9 90.3 96.7 

IoU 80.4 84.4 75.1 79.9 89.9 

DA 74.3 77.8 66.0 72.2 86.9 

Note: AP stands for average classification precision for each class; IoU represents the predicting 526 

accuracy of bounding box; DA indicates the Detection Accuracy combining the AP and IoU. 527 

 528 

FIGURE 7. Examples of object detection results. 529 
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4.2. Accuracy of RGB-D information fusion 530 

Taking single tree (growing on the campus of China Agricultural 531 

University, Beijing, 100083, China) whose real width is 3.20m and real 532 

height is 2.85m as an example, we conducted a real-world experiment to 533 

investigate the prediction accuracy of profile and position based on RGB-534 

D information fusion. In this experiment, 14 sampling points with a step 535 

length of 0.5m from the starting point (2.5m away from the center of the 536 

trunk) to the end point (9.00m away from it) are set up. These parameters 537 

are determined according the reliable sensing range of Intel RealSense 538 

D435 Depth Camera. Each sampling-point’s color and depth images are 539 

presented in Fig.8, and the corresponding results of object detection and 540 

RGB-D information extraction are shown in Fig.9. 541 

As shown in Fig.8, when the relative distance between the tree and the 542 

camera is less than 4.5m, measurement errors of the tree’s width and height 543 

are relatively large. This is because the tree is only partially visible. As the 544 

relative distance increase, the complete image of the tree can be included 545 

in the color image. When it is between 4.5m and 8.0m, the image of the 546 

tree can be seen in both color images and depth images, and the results of 547 

object detection and depth data extraction would be trustful. When the 548 

relative distance is greater than 8.0m, the deep learning algorithm still can 549 

effectively predict the tree’s category and bounding box although the target 550 

tree occupies a small area in the color image. However, depth data 551 

accuracy deteriorates gradually as it becomes hard to effectively 552 

distinguish the tree and background in the depth image. 553 
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 554 

FIGURE 8. Color and depth images of each sampling-point from #1 to #14. 555 

More details about the performance of object detection and RGB-D 556 

information extraction can be found in Fig.9. We use Confidence Score 557 

(CS) to represent the probability that the model predicts the target category 558 

as a tree. The average CS of the 14 sample-points is 0.99. This means that 559 

the change of distance has little effect on the accuracy of deep learning 560 

object detection. In terms of the results of RGB-D information extraction, 561 

the average error of depth data, width and height is -0.77m, -0.67m and -562 

0.65m respectively. However, when the camera is between 4.5m 563 

(sampling-point 5) and 8.0m (sampling-point 12) away from the trees, the 564 

#1 (2.5m) 

#3 (3.5m) 

#2 (3.0m) 

#4 (4.0m) 

#6 (5.0m) 

#8 (6.0m) 

#10 (7.0m) 

#14 (9.0m) 

#12 (8.0m) 

#5 (4.5m) 

#7 (5.5m) 

#9 (6.5m) 

#13 (8.5m) 

#11 (7.5m) 
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errors are -0.53m, -0.26m and -0.24m separately. The results indicate that 565 

the measured data is generally smaller to the true value.  566 

Particularly, from sampling-point 1 to 10, the error of depth data is 567 

negative, but its absolute value decreases with the increase of distance. 568 

From sampling-point 11 to 14, the error of depth data becomes positive, 569 

and it increases in line with the increase of distance. Additionally, from 570 

sampling-point 1 to 8, the prediction errors of width and height are 571 

negative, and its absolute value decreases as the distance increase. While, 572 

from sampling-point 9 to 14, the prediction errors of both width and height 573 

fluctuate little, and their average errors stabilize at -0.05m and 0.03m 574 

respectively. 575 

 576 

FIGURE 9. Results of RGB-D information extraction. 577 

To sum up, the prediction accuracy of profile and location of the object 578 

depends heavily on the relative distance between the camera and object. 579 

Specifically, when the relative distance is 7.5m, object detection precision 580 

and 3D information acquisition performance can reach the optimal state at 581 

the same time. 582 

4.3. Simulation flight experiments 583 

In order to verify the UAV’s abilities of environmental perception, 584 

collision avoidance, and autonomous flight, we proposed a safe and 585 
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effective method as combining the simulation environment with the real 586 

world. In the simulation environment, a virtual UAV was controlled by the 587 

TCS to execute a straight-line flight mission. Meanwhile, customized 588 

scripts assume the burden of sensing the surrounding environment and 589 

generating the avoidance strategy and flight path when necessary. In real 590 

world, we used the Intel RealSense D435 to feed the color and depth 591 

images of a real single tree into the CNN model. When the prediction 592 

results suggest that the tree is on the flight path and there are potential 593 

collision risks, the UAV will automatically interrupt the current straight-594 

line flight mission and perform the obstacle avoidance procedure. After 595 

bypassing the tree in the simulation environment, the UAV will 596 

automatically resume former straight-line flight mission. During the tests, 597 

we manually adjust the FOV of Intel RealSense D435 to trigger the left-598 

turn, right-turn or leap forward collision avoidance procedure respectively.  599 

The results of object detection, 3D spatial position extraction, profile 600 

prediction and the whole flight trajectories under three different 601 

circumstances are comprehensively presented in Fig.10. It can be found 602 

that the simulated flight trajectories are consistent with the anticipate 603 

tracks which have been introduced in Fig.5. The experimental results 604 

showed that the proposed solution can automatically control the UAV to 605 

perform autonomous flight and obstacle avoidance tasks according to the 606 

obstacle’s specific attributes. 607 
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 608 

FIGURE 10. Simulation results of avoidance strategy and flight path under three 609 
different circumstances. (a): Left-turn. (b): Right-turn. (c) Leap forward. The tree size 610 
and calculated position offset have been deliberately magnified by 10 times in order to 611 
make the flight trajectory clearer.  612 

5. Discussion 613 

Based on the experimental results, to some extent, our proposed systems 614 

and methods of environmental perception, collision avoidance and 615 

autonomous flight control have improved the UAV’s automation level and 616 

flight safety.  617 

Having the knowledge of what the ahead obstacle is fundamental but 618 

important for the UAV’s flight safety and working efficiency. Comparing 619 

with traditional methods of obstacle detection, we introduced a depth 620 

camera to sense the flight environment with higher information 621 

dimensions. The state-of-the-art deep-learning based object detection 622 

algorithms was adopt to understand the color images of the real flight scene. 623 

Object detection results indicated the CNN model can precisely predict the 624 

obstacle’s category and bounding box with the AP of 91.9% within 625 

53.33ms. Although the precision and speed maybe not good enough in 626 

some rigorous conditions, but it has significantly improved the plant 627 

protection UAV’s environmental perception abilities given the facts that 628 
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the categories of obstacles in farmland are generally definite and their 629 

distributions are relatively independent. 630 

Object’s profile and 3D spatial position can be extracted by fusing the 631 

RGB-D information. However, test results suggested that the measuring 632 

errors is not a constant, but a dynamic value. This phenomenon could be 633 

caused by many reasons, such as the distance between the camera and the 634 

object, the limits of the sensing rang of the depth camera, the changes of 635 

light intensity, the differences of observation angle, etc. In this work, the 636 

errors of RGB-D information extraction can reach the minimum when the 637 

distance is 7.5m. Nevertheless, this distance is very valuable for the drone 638 

to take appropriate measures to avoid collision when obstacles appear, 639 

especially considering the fact that the normal flight speed of the plant 640 

protection drone is generally less than 5m/s. 641 

Although not considering the influence of many practical factors, the 642 

simulation results still verified the effectiveness of our proposed solution. 643 

By applying a depth camera and deep learning, the drone can avoid 644 

obstacles autonomously based on the knowledge of obstacle’s attributes.  645 

6. Conclusion 646 

In this paper, a novel solution for enhancing the UAV’s environmental 647 

perception and autonomous obstacle avoidance abilities was proposed. 648 

Taking advantages of deep-learning based object detection algorithm and 649 

Intel RealSense D435 depth camera, we introduced a new tactic to obtain 650 

the obstacle’s classification, profile and 3D spatial position via 651 

comprehensively integrating RGB-D information. According to the 652 

obstacle’s specific properties, we elaborated the methods of generating the 653 

optimal collision avoidance strategy and planning the distance-minimized 654 

flight path. Besides, customized scripts and TCS were developed to 655 

improve the UAV’s autonomous flight capability. For evaluating the 656 
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performance of presented solution, a series of experiments were carried 657 

out. Results indicated that DA of CNN model is 75.4% and it costs about 658 

53.33ms for processing single. Additionally, when the camera is between 659 

4.5m and 8.0m away from the tree, the errors of depth data, width and 660 

height are -0.53m, -0.26m and -0.24m respectively. Comprehensive 661 

simulation flight experiment implied that our proposed solution can 662 

significantly improve the UAV’s environmental perception, obstacle 663 

avoidance and autonomous flight abilities. Furthermore, this study is 664 

helpful to promote the implements of UAVs in broader applications. 665 

However, there are still some limitations of this work particularly when 666 

considering the complexity of unstructured farmland environment, the 667 

dynamically changing environmental parameters and the robustness of the 668 

control algorithms. In the future work, we will continuously optimize of 669 

details of our solution and make it more applicable in actual applications. 670 
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