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High Efficiency Micromachined Sub-THz Channels
for Low Cost Interconnect for Planar Integrated

Circuits
Bo Yu, Yuhao Liu, Yu Ye, Junyan Ren, Xiaoguang “Leo” Liu, and Qun Jane Gu

Abstract—This paper presents for the first time the design,
fabrication, and demonstration of micromachined silicon dielec-
tric waveguide based sub-THz interconnect channel for high ef-
ficiency, low cost sub-THz interconnect, aiming to solve the long-
standing intra-/inter- chip interconnect problem. Careful studies
of the loss mechanisms in the proposed sub-THz interconnect
channel are carried out to optimize the design. Both theoretical
and experimental results are provided with good agreement. To
guide the channel design, a new Figure-of-Merit is also defined.
The insertion loss of this first prototype with a 6-mm long
interconnect channel is about 8.4 dB at 209.7 GHz, with a 3-
dB bandwidth of 12.6 GHz.

Index Terms—Channel, dielectric waveguide, interconnect, mi-
cromachined, sub-THz, THz.

I. INTRODUCTION

THE I/O bandwidth growth of intra/inter- chip communi-
cations doubles every two years over the past decade and

the trend is projected to continue in the future [1]. However,
the number of I/O pins increases slowly over the time due to
physical constraints. To overcome this increasing gap between
the I/O bandwidth and pin numbers, the transmitting data
bandwidth per I/O, defined as bandwidth density, should keep
up with the interconnect bandwidth requirement. In addition,
the energy used for data communications may potentially be
orders of magnitude higher than the energy used for data
processing and storage [2]. There are two scenarios for the
interconnect: intra-chip interconnect, which is the communi-
cation among CPU cores or among the high speed processing
components inside a chip, and inter-chip interconnect, which
is the communication between chips. Therefore, to ultimately
solve the problem of intra-/inter- chip interconnect, both
bandwidth density and energy efficiency should be boosted.

Interconnect research has been active in two areas: op-
tical interconnect [3]–[6] and electrical interconnect [7]–[11].
Optical interconnects have the advantages of low loss and
high bandwidth, but it is still very challenging to integrate
highly efficient light sources with current CMOS processes [4].
Electrical interconnect schemes are compatible and scalable
with silicon processes. However, the transmission media, metal
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Fig. 1. Proposed sub-THz interconnect by leveraging optical interconnect [3]
and electrical interconnect advantages.

wires, has severe conduction loss with high data rates or
operating at high frequencies, thus limiting the supported
bandwidth. Therefore, both electrical and optical interconnect
face big challenges to fill this gap individually.

Sub-THz interconnect, using the spectrum sandwiched be-
tween optical and microwave frequencies, holds high poten-
tials to fill the interconnect gap with wide bandwidth density
and high energy efficiency by leveraging advantages of both
optical and electrical interconnect approaches: low loss quasi-
optical channels as well as advanced high speed semiconductor
devices, illustrated in Fig. 1.

The comparison with the state of the art is shown in Table
I. Wireless chip-to-chip communication, demonstrated in [7]–
[10], suffers from large losses. For example, the path loss is
greater than 40.9 dB with 40-mm distance at 260 GHz [7]
and 66 dB with 1-m distance at 45 GHz [8]. The challenge
of wireless chip-to-chip communications is that the path loss
is inversely proportional to λ2, which impedes high frequency
adoption in wireless scheme. Besides, the interference between
channels is a big issue for wireless based schemes. Chang’s
group [11] demonstrates a design on wired interconnect based
on-chip transmission line, which also faces the challenge of
increasingly high losses versus frequencies.

In general, the interconnect can be classified into three
types, transmission line (including microstrip line, coplanar
waveguide (CPW), grounded CPW, etc.) [12], [13], metallic
waveguide [14]–[18], and dielectric waveguide [19], [20].
The dielectric waveguides with low loss dielectric material
have much less losses than transmission lines and metallic
waveguides since the conduction loss is avoided. For example,
a metal based transmission line has almost three orders higher
loss than the loss of silicon ribbon at THz frequency [21].
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TABLE I
COMPARISON AMONG DIFFERENT TECHNOLOGIES OF CHIP-TO-CHIP

COMMUNICATIONS

Design Wired/
Wireless

Carrier
Freq

(GHz)

Distance
(mm)

Path
Loss
(dB)

Normalized
Path loss*
(dB) with
10-mm l

at 200 GHz
[7] Wireless 260 40 40.9 26.6
[8] Wireless 45 1000 66 38.9
[9] Wireless 60 100 58 48.5
[10] Wireless 43 100 45 38.4
[11] Wired 60 3 6.6 N/A

This work Wired 210 6 8.4 8.7
*The path loss normalization is calculated based on Friis equation for
wireless type.
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Fig. 2. Illustration of the proposed dielectric waveguide based sub-THz
interconnect, which is adapted from [25].

The loss for the CMOS transmission line is about 1 dB/mm
at 100 GHz and 2 dB/mm at 150 GHz and increases fast with
frequency [22], [23]. Moreover, from the process-compatible
point of view, the dielectric waveguides are easier to fabricate
and potentially compatible with integrated silicon circuits
compared with metallic waveguides. Metallic waveguide poses
a big challenge to integrate with ICs due to the waveguide
flange connection. Therefore, to enable sub-THz interconnect,
the channel should have wide bandwidth and small size for
large bandwidth density, low loss for high energy efficiency,
and good compatibility with silicon processes for low cost as
well as good isolation among channels.

To satisfy these requirements, dielectric waveguides [24]
are employed by taking advantage of quasi-optical channels.
Low loss THz channels have been investigated with loss of
0.1 dB/m [21]. However, till now, no investigations have been
conducted on planar silicon processes compatible sub-THz
channels for intra-/inter- chips interconnects.

In this work, we demonstrate the feasibility of using a
micro-machined dielectric waveguide as a low-loss chip-to-
chip interconnect channel that is compatible with conventional
semiconductor and packaging processes. Fig. 2 illustrates the
concept [25]. The signal, transmitting from chip A, propagates
through the channel and reaches chip B. The bending struc-
tures at two ends of the channel are to establish the link for
planar processes.

Compared with the authors’ previous work [25], this paper
presents a thorough analysis of the design trades-offs for the
silicon dielectric waveguide as well as the analysis of the
bending loss, radiation loss, and mode conversion loss. We
propose a Figure of Merit (FoM) to quantify channel design
by incorporating bandwidth-area efficiency and channel loss.

The first demonstration is presented at 210 GHz due to the
constraint of the measurement equipment availability. The
channel design methodology can be readily applied to higher
frequencies in the THz range.

This paper is organized as follows. Section II reviews
and presents the fundamental concept and design methods
of silicon dielectric waveguide based sub-THz interconnect.
Section III discusses the design and considerations of the
coupling structure. Section IV presents the fabrication, the
measurement, and discussions of the sub-THz interconnect.

II. SILICON DIELECTRIC WAVEGUIDES AS SUB-THZ
INTERCONNECT MEDIUM

To enable high data transmission rate, the proposed sub-THz
dielectric interconnect channel must be optimized for both
bandwidth and loss. The bandwidth of a dielectric waveguide
is primarily determined by the dispersion characteristics of the
chosen mode of the propagating wave and the orthogonality
and/or separation from other modes. In this demonstration of
the proposed concept, we choose to operate our waveguide
in the lowest-order mode (Ey11) to simplify the design and
implementation. The loss of the waveguide is determined by
many factors, including the dielectric loss of the material, the
geometry of the waveguides, such as bending and discontinuity
structures, and possibilities of mode conversions. The follow-
ing sub-sections provide detail discussions of these factors for
design guidance.

A. Material Loss

Material loss can be a critical contribution to the total
channel loss. It is therefore desirable to use low-loss materials
as the dielectric medium. Several materials have been stud-
ied at sub-THz frequencies, such as silicon [21], [26]–[30],
quartz [21], and plastic [31], [32]. These research provides
evidence that dielectric sub-THz interconnect channels can be
designed with low loss. In particular, the loss of high resistivity
(HR) silicon has been reported to be as low as 0.1 dB/m at
200 GHz [21], which is one of the reasons that HR silicon is
used in this work. A second reason to choose HR silicon is
due to its relatively high dielectric constant (εr = 11.9), which
helps to confine the electromagnetic (EM) wave inside the
waveguide. A higher level of confinement can reduce cross-
talk between adjacent channels, lower packaging parasitics,
and facilitates wave guidance in non-straight channels, such
as bending structures.

B. Waveguide Geometry

Rectangular silicon waveguides with air surrounding are
used in this work. Compared to the other geometries, such
as circular waveguides, rectangular waveguides are easier to
fabricate using microfabrication technologies, such as the deep
reactive-ion etching (DRIE). Also, rectangular waveguides are
not prone to have polarization mode dispersion issues [33],
which minimize polarization mismatches and losses.

Fig. 3(a)-(c) show the effective index neff , the wave con-
finement factor Γ, and the attenuation constant α of rectangular
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Fig. 3. (a) Calculated effective index, (b) simulated confinement factor, and
(c) simulated attenuation constant 200 GHz with various h values. The inset of
Fig. 3(c) shows the HFSS simulation setup labeled with waveguide dimensions
(p1 and p2 are wave ports).

waveguides of various dimensions w of 100–500 µm, and h of
100–700 µm) based on full-wave simulation in ANSYS high
frequency structure simulator (HFSS). Due to the unshielded
characteristic, the size of the wave port in simulation is set
significantly larger than the cross section. The channel is
enclosed by an air box with radiation boundary. Γ is given
by

Γ =
Pin

Pt
(1)

where Pin is the power inside the waveguide, and Pt is the
total cross section power. Γ represents how much EM wave
energy is propagating inside the dielectric channel. It can be

(a) (b) (c)

(d) (e) (f)

Air

Waveguide

Fig. 4. Cross section views of magnitude of the E-field distribution with
200-µm w at 200 GHz with different channel height (a) h = 100 µm, (b) h
= 200 µm, (c) h = 300 µm, (d) h = 400 µm, (e) h = 500 µm, and (f) h =
1500 µm.
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Fig. 5. Simulated phase velocity vp and group velocity vg as a ratio of the
free-space value c for the channel with 6-mm l, 300-µm w, and 500-µm h.

seen that at small w and h (compared to the propagation
wavelength λg , which is about 1.3 mm at 200 GHz, the wave
is weakly confined and has a large portion of wave propagating
outside the channel. At large w and h (> 300 µm), the wave
is mostly confined inside the silicon channel, with neff , Γ,
α values saturating with larger dimensions. The cross section
views of electric field distribution with various h are plotted
in Fig. 4. It is observed that larger portion of the electric
field is confined within the waveguide as h increases. The
attenuation constant α is a weak function of w due to the
mode polarization along h direction.

The dispersion is another important aspect to optimize this
channel. The phase and group velocity are utilized to check
the dispersive characteristic as shown in Fig. 5. When the
frequency is higher than 150 GHz, the dispersion decreases.
Therefore, from a bandwidth point of view, it is desirable
to operate at either the weakly or strongly confined states.
However, from a loss point of view, we prefer to avoid the
weakly confined region even though its straight channel loss
is lower. This is due to the excessive radiation loss caused
by the bending structures and large cross-talk among channels
when waves are not confined. It is noted that the attenuation
constant is still low (< 0.09 dB/mm from simulation) for the
highly confined case.

Isolation is also important with multiple channels, which
is dependent on the channel space. The simulated isolation



4

400 450 500 550 600
20

25

30

35

40

45
Is

ol
at

io
n 

(d
B)

s (m)

s

Fig. 6. Isolation between two identical 6-mm straight channels versus channel
space s with 300-µm w and 500-µm h at 200 GHz.
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Fig. 7. (a) Simulated radiation loss and (b) mode conversion loss illustrated
by HFSS simulations.

versus channel space is shown in Fig. 6. To achieve 30-dB
isolation criteria, the minimum space s is 480 µm between
two channels for l = 6 mm, w = 300 µm and h = 500 µm at
200 GHz. s will scale down with the increase of the operating
frequency since the dimensions of the channel are inversely
proportional to the operating frequency.

C. Radiation Loss

To implement the intra-/inter- chip interconnect for planar
processes, the bending structure is the most intuitive and
convenient approach. However, the bending structures may
introduce additional loss due to radiation and mode conversion
as shown in Fig. 7. Bending structure has been studied as
early as 1920s [33]. Researchers have reported very low
bending loss designs [27], [28]. However, these works are for
electrically large bending structures, such as [27] with about
113 wavelengths and [28] with about 6 wavelengths. Because
the practical constraints of integrated circuit fabrication and
packaging, a large bending structure is not feasible to integrate
and the investigation of a small bending structure is needed.

Radiation loss is caused because the portion of EM waves
leaking into the air cannot preserve the phase front after the
bending. As shown in Fig. 7(a), the portion of the waves
propagating in air does not follow the curvature of the bend
and results in the power loss. A method proposed in [34] can
be used to analyze the radiation loss. The bending structure
can be divided into infinitesimal sections as shown in Fig. 8.

Waveguide
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Fig. 8. Bending loss mechanism analysis diagram [34].

Considering each section as an array of point sources [35] and
assuming that the power beyond the first null of the beam, that
is, the power in minor lobes, will be lost after bending, the
attenuation constant is defined as

αrad ≈ 1

Zc

Pl

Pt
, (2)

where Pl is the power loss through radiation, Pt is the total
cross section power, and Zc is the field propagation distance
with a unit power loss [34]. Based on diffraction theory, Zc

is derived as

Zc =
h/2

tanϕ
=

h/2

tan[sin−1(
λg
h

)]

≈ h2

2λg
, (3)

where h is the channel height, ϕ is the half beam angle, and
the λg is the guided wavelength in the channel. Pl and Pt can
be obtained from

Pl =

∫ ∞
Xr

H2(x), (4)

and

Pt =

∫ ∞
−∞

H2(x)dx, (5)

where H(x) is the magnetic field distribution, and Xr is
the distance from the waveguide center to the position of
the first null. Beyond the radius (r + Xr), the waves phase
velocity would have to exceed the velocity of unguided waves,
which results in the loss of the corresponding wave power. To
preserve the phase front [34], Xr has the relationship of

(r +Xr)
dθ

dt
=

ω

β0
. (6)

In addition, H(x) is given by

H(x) =


H0 cos(mx),−h

2
≤ x ≤ h

2

H0 cos(m
h

2
)e−C0(|x|−h2 ), else

(7)

where H0 is the amplitude of H(x), C0 is the decay rate along
the h direction, and m is the mode number. Substituting (3),
(4), and (5) into (2) yields

αrad =

1
2C0

cos2(m
h

2
)e−2C0

βz−β0
β0

r2λge
C0h

[h2 + 1
2m sin(mh) +

1

C0
cos2(m

h

2
)]h2

, (8)
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Fig. 9. Calculated and simulated bending loss with respect to r at 200 GHz
with 200-µm w and 500-µm h.

where r is the channel radius, βz is the guided propagation
constant, and β0 is the propagation constant in free space.
By multiplying the EM waves propagation distance l, the arc
length of a quarter circle, the radiation loss for a bend is given
by

Loss = αradl = αrad
πr

2
. (9)

Note that although (9) shows a linear relationship between
Loss and r, the αrad term is also dependent on r with an
e−r relationship, which decays much faster. Therefore, the
radiation loss is lower for a larger r, which is verified in
Fig. 9 with both analytical and full-wave simulation results.
The theoretical radiation loss analysis at the bend is based on
Fig. 8 by assuming the bending structure has infinite width in
the w direction. In real case, the width is finite. Hence, the
field distributions are not exactly same, which is responsible
for the major discrepancy between theoretical and simulated
results in Fig. 9.

D. Mode conversion Loss

The discussions so far seem leading to a conclusion that a
waveguide with large w, h, and r has smaller bending loss.
However, the large waveguide dimensions may introduce a
competing loss mechanism by introducing mode conversion
as shown in Fig. 7(b).

Mode conversion can lead to additional loss when w and h
of the waveguide are large enough to allow multiple modes
to exist at the operating frequency. The issue is exacerbated
by the bending structure of the proposed interconnect scheme.
Fig. 10 shows neff of several possible modes for a channel of
w = 300 µm at various h values. For example, the Ey11 mode
may be converted to Ey12 mode when h is larger 260 µm after
bending.

Fig. 11 shows the bending loss, consisting of radiation loss
and mode conversion loss, versus h with a fixed r of 300 µm
and a fixed w of 300 µm at 200 GHz. Multi-mode wave
ports are used in HFSS to extract the power conversion among
the lowest 3 modes. When h is less than 500 µm, radiation
loss dominates. Smaller height leads to a larger portion of the
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Fig. 10. Calculated neff versus frequency for the first three modes at
200 GHz with 300-µm w.
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Fig. 11. Simulated total bending loss versus h at 200 GHz with 300-µm w
and 300-µm r.

waves leaking into the air and causes larger radiation loss as
shown by the curve with up triangles. When h is larger than
500 µm, higher order modes may be excited and propagate,
causing increasing mode conversion loss as shown by the curve
with down triangles. The total loss is plotted as the curve with
squares. The minimum loss of 0.3 dB occurs around 500 µm.

A contour map of the bending loss versus w and h is plotted
in Fig.12. The minimum bending loss occurs for h = 500 µm
and w = 400 µm.

E. Figure-of-Merit

As discussed in Section I, the performance of chip-to-
chip interconnect is determined by the bandwidth density
and energy efficiency. The bandwidth density is defined as
bandwidth per cross section area,

ρBW =
BW

Area
. (10)

A larger bandwidth density means a higher spatial utilization
efficiency to enable a higher data rate transmission per unit
space. To evaluate the performance of sub-THz interconnect
channel, we propose a Figure-of-Merit, defined as

FoM =
ρBW

Channel Loss
=

BW/Area
Channel Loss(r, h, w)

, (11)
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where channel loss depends on the r, h, and w of the
channels. Note that the dominant loss mechanism depends
on the communication distance. The total channel loss is
dominated by bending loss for short distance communications
(l < 10 mm) while material loss is the dominant factor for the
longer ones. Assuming that the data bandwidth is 10 percent
of the carrier frequency, the contour map of FoM versus h and
w is plotted in Fig. 13. The highest FoM occurs around h =
400 µm and w = 400 µm.

Higher operating frequency leads to better FoM. This is
because at higher operating frequencies, the optimal waveg-
uide dimensions, h, w, and s, are all inversely proportional
to the operating frequency. Assuming a constant fractional
bandwidth, higher operating frequency leads to the significant
increasing of FoM as shown in Fig. 14.

III. COUPLING STRUCTURE

To transmit signals between IC chips and channels, coupling
structures are needed with the requirements of high directivity,
high radiation efficiency, and with the broadside radiation
pattern. High directivity and high coupling efficiency aim to
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Fig. 14. FoM versus frequency for sub-THz interconnect with 6-mm l.

maximize the power transfer to the receiver through the in-
terconnect channel. The reasons to choose broadside radiation
patterns compared to end-fire radiation patterns are: a) better
isolation due to non-direct interference from the reflected
waves to the circuits in surrounding places; b) flexible channel
location because the coupling structure can be located in the
whole chip instead of just on the chip peripherals otherwise
in end-fire radiation pattern cases.

In this work, a patch antenna based coupling structure is
chosen due to the mature design method [33]. Fig. 15(a)
illustrates the coupling structure. The signal is excited through
a coplanar waveguide (CPW), and transitioned to a microstrip
line before feeding the coupling structure. Rogers 3850, with
25.4-µm thickness and dielectric constant of 2.9, is chosen as
the coupling structure substrate. To simplify the fabrication,
a via-less CPW to microstrip line transition is adopted [36].
In order to prevent the energy leakage through the substrate,
choosing the ground plane width smaller than half wavelength
of the signal avoids the generation of parallel plate modes and
high order modes [37]–[39]. The dimensions of the coupling
structure are labeled with EM simulation results in Fig. 15.
Also, both near field and far field patterns are presented.
From these patterns, it can be seen that the signal effectively
propagates upward to the perpendicular direction from the
antenna.

Noted that the coupling structure exhibits a limited band-
width whereas the bandwidth of the dielectric waveguide is
very large as shown in Fig. 17. Future demonstrations of the
sub-THz interconnect concept will focus on improving the
bandwidth of the coupling structures.

IV. EXPERIMENTAL DEMONSTRATION

A. Design of the Demonstration Setup

The simulation results of the complete sub-THz interconnect
channel with a pair of patch antenna coupling structures
and feeding structures are shown in Fig. 16. The waves are
radiated by the coupling structure A, and then coupled to
the waveguide. Propagating through the waveguide, the waves
are collected by the coupling structure B. Fig. 16(a) also
shows partial portions of EM waves leaking into air due to
the bending structure causes coupling loss. Besides, a larger
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Fig. 16. (a) Simulated magnitude of E-field distribution of a complete
sub-THz interconnect channel with a pair of channel feeding structures at
210 GHz, and (b) simulated S21 with 300-µm w, 500-µm h, and 300-µm r.

beam width compared with waveguides cross section size also
results in the finite power collection capability. The simulated
S21 as shown in Fig. 16(b) indicates the minimum insertion
loss of 5.9 dB of the complete interconnect structure. The
band-limited behavior S21 is due to the limited bandwidth of
the patch antenna; the silicon channel waveguide itself is very
wideband as shown in Fig. 17.

B. Fabrication

The fabrication processes of the sub-THz interconnect chan-
nel are summarized in Fig. 18. A 500-µm thick HR silicon
wafer (resistivity of 10000 Ω · cm) is first patterned with a
thick (∼ 17 µm) photoresist (AZ9260) to define the waveguide
geometries: h and r. Then, the HR silicon wafer is attached to
a carrier substrate and etched through in a DRIE process. The
individual channels are isolated after etching. Fig. 19(a) shows
the photographs of the channel from different perspectives.
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Fig. 17. Simulated S-parameters versus frequency for the straight silicon
channel waveguides without or with bending structure with 6-mm l, 300-µm
w, 500-µm h, and 300-µm r.
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Note that the silicon waveguide is etching from side view to
simplify the fabrication complexity as shown in Fig. 18(a)(3).

The coupling structure is fabricated on a Rogers 3850
substrate. Photolithographic thin film patterning is used to
achieve a fine feature definition. One side of the copper
laminate is completely removed first. The antenna structure is
then patterned with a Ti/Au thin film of thickness 50/300 nm
by a lift-off process. Fig. 19(b) shows the fabricated scanning
electron microscope (SEM) photograph of the antenna cou-
pling structure.

A 3D printed holder with a low dielectric constant material
(Acrylate based polymer, εr ≈ 2.7) is used to support the
channel. According to the full-wave simulations, the holder
introduces negligible effects on the signal propagation. The
alignment of the channel and two coupling structures is very
critical. To ensure good alignment, the channel holder and
alignment marks are introduced. The channel holder is first
attached to the two alignment marks, which should be put
exactly between alignment marks; the holder’s slot, where the
channel is to insert, is then in the center of alignment marks
and holds the channel.

C. Measurement Results and Discussions

Fig. 20 and 21 illustrate the measurement setup, which is
based on an Agilent network analyzer (PNA-X N5247A). A
pair of Virginia Diodes frequency extension modules (VDI
WR5.1-VNAX) up-converts the signal frequency to G band
(140–220 GHz). WR-5 waveguides are used to guide the wave
toward the tip of the probes. SOLT (Short, Open, Load, Thru)
calibration method is employed to set the reference plane at
the edge of the patch antenna for each side. The measured
interconnect path includes two patch antenna based coupling
structures, and the sub-THz interconnect channel.

Fig. 22 shows the comparison of measurement results
between the cases with and without the sub-THz interconnect
channel, which indicates the insertion loss is significantly
improved. Fig. 23 also shows the measured S-parameters
comparing with the simulation results after using extracted
material parameters, specifically the substrate loss tangent and
metal effective conductivity. The minimum insertion loss is
8.4 dB, which is about 2.5 dB higher than the simulation result
in Fig. 16(b) due to two major reasons. First, the real loss

(a)

(b)

PNA-X

Frequency
Extender

DUT

Sub-THz 
Interconnect

Channel

Holder

Coupling 
Structure

Calibration Plane

Fig. 21. (a) Photograph of the test bench, and (b) the zoom-in picture of the
channel with the holder.
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Fig. 22. Comparison of measured and simulated S-parameters (with extracted
material parameters) with 6-mm l, 500-µm h, 500-µm w, and 300-µm r and
the case without the sub-THz interconnect channel.

tangent of the substrate for the coupling structure is larger
than their typical values at such high frequencies, with the
extraction method described in the next paragraph. Second,
titanium is used as an adhesion layer under the gold thin
film. Because the skin depth of gold and titanium at 210 GHz
are 172 nm and 807 nm, separately, the underlying titanium
layer with 50 nm thickness can be penetrated completely. The
effective conductivity of the Ti/Au thin-film is extracted to be
2.92 × 107 S/m.

The substrate loss tangent is extracted through fabricated
transmission lines as shown in Fig. 23(a). After comparing
the S21 between measurement and simulation results, the
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Fig. 23. Measured and simulated S21 of the fabricated transmission line
before and after extraction of loss tangent of a Rogers 3850 board and
metal conductivity by including titanium and gold together. The length of
the transmission line is 5.1 mm.

extracted loss tangent is 0.053, as compared to 0.0067 at
98.5 GHz [40]. Fig. 23(b) shows the comparison among mea-
sured S21 and simulated S21 before and after extraction. By
using the extracted material parameters, the updated simulated
S-parameters have a good agreement with measurement results
as shown in Fig. 22.

V. CONCLUSION

This paper for the first time presents the design, analysis and
demonstration of a micromachined silicon dielectric waveg-
uide based the sub-THz interconnect channel for silicon planar
integrated circuits. A detailed analysis of channel losses,
including radiation loss and mode conversion loss, channel size
optimization for the bending, fabrication procedure, as well as
the measurement setup have been conducted. To quantify the
design optimization, an FoM is also defined. The analytical,
simulated, and measured results agree well, demonstrating
much lower loss than other electrical interconnect methods
while maintaining better process compatibility than optical in-
terconnect. In addition, this technique can be readily scaled up
to THz frequencies due to a better FoM at higher frequencies.
Therefore, the authors envision that THz interconnect has the
potential to eventually solve the long-standing interconnect
problems of intra-/inter- chip communications.
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