

Team Mega Hurtz
Final Group Report

Charlie Saechou

Jonathan Saechou
Vincent Saechao

Will Yang

March 20th, 2018

1

Table Of Contents

Topic Page Number

Abstract 2

Design Rules 2

Overall Design Details 3

PCB Design 6

Antenna Choice 10

Final Design Testing 13

Complete System Results 19

Competition Day 19

Conclusion 20

Acknowledgements 21

Appendix 21

Abstract:

This project was split up into two quarters. During fall quarter, we built our own
FMCW radar system given helpful guidance of lab manuals and TAs. This quarter, we
implemented what we learned about the FMCW radar and attempted to design and
build our own improved FMCW radar system. This 2.4 GHz system will be used in an
outdoor environment to detect targets at various distances. Our goals for the radar
system was to have low power consumption, low overall weight, and high accuracy.

Design Rules/Scoring:

1) Be able to detect a 0.3 x 0.3 m​2 ​target ranging from 5 meters to 50 meters
2) Budget will be up to $300
3) Scoring

2

Figure (1). Scoring Details

Overall Design Details:

Fig. () Block Diagram

After creating our block diagram based off quarter 1 lab designs, we used
ADIsimRF to calculate the gain of the transmitting and receiving power. We had to split
the transmitting side and receiving side into two seperate ADI simulations. To
implement both parts of the antenna, we found the desired component on websites
such as Digikey or Mini-circuits. These websites had specific information about the
components to help us determine the gain. Once we put all the components on the
simulation, replaced some components to have no errors. The receiving and transmit
antenna simulations are shown below.

3

Fig. () ADIsim for Transmitting Antenna

Fig. () ADIsim for Receiving Antenna

4

Component Model Number URL

LNA (1) HMC 639ST89E

https://www.digikey.com/product-detail/en/analog-devices-inc/HMC639ST89E/112
7-3004-ND/5359984

VCO ROS-2490+ https://www.minicircuits.com/WebStore/dashboard.html?model=ROS-2490
%2B

Mixer Sim-63LH+ https://www.minicircuits.com/WebStore/dashboard.html?model=SIM-63LH%2B

LPF MAX291ESA+

https://www.digikey.com/product-detail/en/maxim-integrated/MAX291ESA/MAX291
ESA-ND/1513302

Amplifier (Rx) #1 PGA-103 https://www.minicircuits.com/WebStore/dashboard.html?model=PGA-103%2B

Amplifier (Tx) PGA-103 https://www.minicircuits.com/WebStore/dashboard.html?model=PGA-103%2B

Amplifer (Rx) #2 MMG20241H https://www.mouser.com/productdetail/nxp-freescale/mmg20241ht1?qs=sGAEpiM
ZZMvlz5n0fllKWCPT5hyshv%2FsuQS0BdS5sXs%3D

Antenna Yagi http://www.wa5vjb.com/pcb-pdfs/Yagi2400.pdf​ or
http://www.wa5vjb.com/products2.html

Splitter BP2U+ https://www.minicircuits.com/WebStore/dashboard.html?model=BP2U%2B

Table () Component List

5

https://www.minicircuits.com/WebStore/dashboard.html?model=ROS-2490%2B
https://www.minicircuits.com/WebStore/dashboard.html?model=ROS-2490%2B
http://www.wa5vjb.com/pcb-pdfs/Yagi2400.pdf

PCB Design:

To design our pcb schematics, we used the datasheets based off the
components we chose. Each component had a specific layout consisting of resistors,
capacitors and inductors. The data sheet also gave us the specific values for them.
Once we had our schematic prepared, we had to create the footprints of each
component based off of the dimensions given in the datasheet. Luckily, we went
through many pcb designs in the first quarter to know that creating the footprints
correctly is a big deal because if it is wrong, it will be hard to solder the components on
when the pcb board comes back. An important thing to remember is that all components
that are not on the KiCad software requires a new footprint. Though KiCad may have
some equivalent footprint design, there most likely is something that is different. As a
caution, we created new footprints for each component we used to ensure the size on
the PCB was correct.

For our design, we chose to split the baseband and RF pcb into two seperate
pcbs. This will allow us to test the two pcbs separately and will make it easier for us to
troubleshoot when a problem arises. Also, if one were to not work, we wouldn't have to
through the whole design away. We would be able to use the half that does work and
build the other half based off of quarter one designs.

As we designed the RF board, there were many things we had to take into
consideration. The RF PCB contained the RF signals, which is very important in testing
the radar system. So when designing, we had to make sure the traces for the RF board
were completely straight as it can be to avoid loss in signal from sharp edges. When the
board was complete, we added via fences to connect the top and bottom ground fills.
This same process was repeated for the baseband PCB.

6

Fig. () RF Schematic

7

Fig. () Baseband Schematic

8

Fig. () RF PCB Layout

Fig. () Baseband PCB Layout

9

Fig. () RF PCB Soldered

Fig. () Baseband PCB Soldered

Antenna Choice:

Based off previous teams, we chose to go with the Yagi Antenna for our Transmitting
Antenna and the coffee cans from quarter 1 as our Receiving antenna. This antenna
gave our radar system a high gain. According to the Yagi datasheet, the antenna had a
maximum signal of 10-11dBi at 2.4 GHz. However, when actually using the antenna, the
bandwidth was a lot smaller than advertised.

10

Fig. () Yagi Antenna (Transmit)

11

Fig. () Coffee Can (Receive)

12

Final Design Testing:

When we tested our RF pcb system in lab, we were able to amplify the signal as
we moved a metal plate away and to the antennas. As shown in the figures below, the
signal was a little messy but you can clearly see the signal does get larger in addition to
the change in frequency. This made us believe our RF pcb board worked.

When we tried to test our baseband pcb, we kept short circuiting the board. It
was hard to determine what caused the short circuit because there were many
possibilities such as the soldering touching, nodes connected to the wrong place in the
pcb design, forgetting to ground a component, etc. This being the case, and time
running out, we chose to not use the baseband design and to build our quarter 1 system
to compete with.

13

Fig. () Setup Test of RF PCB in lab room

14

Fig. () Output of RF PCB with no plate

Fig. () Output of RF PCB with plate

15

Testing the Gain stage:

Figure () Input Signal with Vpp of 128.1mV

16

Figure () Vpp of the output of the gain stage of 3V
Testing the LPF:

17

DAC Output:

18

Complete System Results

We were able to produce a wav file from the quarter one system and run it
through the python code to see the distances indoors but it didn’t quite work as well
outdoors on the test day.

Competition Day

Due to the rain on the competition day, we were not able to get very accurate
results on some of the measurements in addition to the system being just a remake of
the quarter one system. Using the quarter one system, we were able to grab the wav file
from the field test and find the distances to send to the TAs with the python code.

19

Fig. () Radar system set up

Conclusion

Our team learned a lot during this two quarter course. During the first quarter, our
labs were guided so building the radar was quite simple since all the components and
designs were given. Though we ran into problems with components not working, we
were able to debug each section to determine where the problem occurred. In quarter 2,
we realized that building a radar on our own without guidance is quite complicated. We
had to decide our own components to use, and making sure each component had
enough power to power the next component.

We learned how to create a PCB and then improved on this skill by learning
more about how each connection should be made. When testing the actual PCBs and
breadboards, we knew to check every connection. This ensured that the physical board
we had was what we designed on KiCad. When testing the radar system outside, we

20

noticed the system performs different than inside lab. However, we were able to get
results and send them to the TAs for comparison after the competition.

Acknowledgements

Professor Xiaoguang Liu
TAs: Songjie Bi, Hind Reggad, Mahmoud Nafe

Appendix

Code to generate Sine wave from Triangle Wave

/*
Triangle wave and sync pulse generator to control a (0-5V input range) VCO for FMCW radar.
The MPC4921 DAC is used to generate a triangle wave with a period of 40ms.
PWM of the Arduino UNO is use to simultaneously generate the sync pulse,
used for signal processing.
*/

#include <SPI.h> // Include the SPI library

int indexx = 0;
bool flag = false;

const int slaveSelectPin = 10; //set the slave select (chip select) pin number
const int SYNC = 8; //set the SYNC output pin number

int outputValue[] = {

};

void setup()
{
 // Set pins for output
 pinMode(SYNC, OUTPUT); // SYNC pin
 digitalWrite(SYNC, LOW); // Sync pulse low
 pinMode(slaveSelectPin, OUTPUT); // Slave-select (SS) pin
 SPI.begin(); // Activate the SPI bus

21

 SPI.beginTransaction(SPISettings(16000000, MSBFIRST, SPI_MODE0)); // Set up the SPI
transaction; this is not very elegant as there is never a close transaction action.
}

void loop()
{
 if (indexx == 4096){
 indexx = 0;
 }

 if (outputValue[indexx] == 2048 || (flag && outputValue[indexx] == 2045)){
 digitalWrite(SYNC, !digitalRead(SYNC));
 }

 if (outputValue[indexx] == 2045){
 flag = !flag;
 }

 byte HighByte =highByte(outputValue[indexx]); // Take the upper byte
 HighByte = 0b00001111 & HighByte; // Shift in the four upper bits (12 bit total)
 HighByte = 0b00010000 | HighByte; // Keep the Gain at 1 and the Shutdown(active low)
pin off
 byte LowByte = lowByte(outputValue[indexx]); // Shift in the 8 lower bits

 digitalWrite(slaveSelectPin, LOW);
 SPI.transfer(HighByte); // Send the upper byte
 SPI.transfer(LowByte); // Send the lower byte
digitalWrite(slaveSelectPin, HIGH); // Turn off the SPI transmission

 indexx = indexx + 1;
}

Python Code

-*- coding: utf-8 -*-
#range radar, reading files from a WAV file
Originially modified by Meng Wei, a summer exchange student (UCD GREAT Program, 2014)
from Zhejiang University, China, from Greg Charvat's matlab code
Nov. 17th, 2015, modified by Xiaoguang "Leo" Liu, lxgliu@ucdavis.edu

import wave
import os

22

from struct import unpack import numpy as np
from numpy.fft import ifft import matplotlib.pyplot as plt from math import log

#constants
c= 3E8 #(m/s) speed of light
Tp = 20E-3 #(s) pulse duration T/2, single frequency sweep period.
fstart = 2260E6 #(Hz) LFM start frequency
fstop = 2590E6 #(Hz) LFM stop frequency
BW = fstop-fstart #(Hz) transmit bandwidth
trnc_time = 0 #number of seconds to discard at the begining of the wav file

window = False #whether to apply a Hammng window.

for debugging purposes # log file
#logfile = 'log_new.txt' #logfh = open(logfile,'w') #logfh.write('start \n')

#read the raw data .wave file here
#get path to the .wav file
#filename = os.getcwd() + '\\running_outside_20ms.wav' filename = os.getcwd() +
'\\range_test2.wav' # The initial 1/6 of the above wav file. To save time in developing the code
#open .wav file
wavefile = wave.open(filename, "rb")

number of channels
nchannels = wavefile.getnchannels()

number of bits per sample sample_width = wavefile.getsampwidth()

sampling rate
Fs = wavefile.getframerate()
trnc_smp = int(trnc_time*Fs) # number of samples to discard at the begining of the wav file

number of samples per pulse
N = int(Tp*Fs) # number of samples per pulse

number of frames (total samples) numframes = wavefile.getnframes()

trig stores the sampled SYNC signal in the .wav file #trig = np.zeros([rows,N])
trig = np.zeros([numframes - trnc_smp])
s stores the sampled radar return signal in the .wav file #s = np.zeros([rows,N])

s = np.zeros([numframes - trnc_smp]) # v stores ifft(s)
#v = np.zeros([rows,N])

23

v = np.zeros([numframes - trnc_smp])

#read data from wav file

data = wavefile.readframes(numframes)

for j in range(trnc_smp,numframes): # get the left (SYNC) channel
left = data[4*j:4*j+2]
get the right (Data) channel right = data[4*j+2:4*j+4]

#.wav file store the sound level information in signed 16-bit integers stored in little-endian format

#The "struct" module provides functions to convert such information to python native formats, in
this case, integers.

if len(left) == 2:
l = unpack('h', left)[0]

if len(right) == 2:
r = unpack('h', right)[0]

#normalize the value to 1 and store them in a two dimensional array "s"

trig[j-trnc_smp] = l/32768.0 s[j-trnc_smp] = r/32768.0

#trigger at the rising edge of the SYNC signal trig[trig < 0] = 0;
trig[trig > 0] = 1;

#2D array for coherent processing s2 = np.zeros([int(len(s)/N),N])

rows = 0;
for j in range(10, len(trig)):

if trig[j] == 1 and np.mean(trig[j-10:j]) == 0: if j+N <= len(trig):

s2[rows,:] = s[j:j+N] rows += 1

s2 = s2[0:rows,:]

#pulse-to-pulse averaging to eliminate system performance drift overtime
for i in range(N):

s2[:,i] = s2[:,i] - np.mean(s2[:,i]) #2pulse cancelation

24

s3 = s2
for i in range(0, rows-1):

s3[i,:] = s2[i+1,:] - s2[i,:]

rows = rows-1 s3 = s3[0:rows,:]

#apply a Hamming window to reduce fft sidelobes if window=True
if window == True:

for i in range(rows): s3[i]=np.multiply(s3[i],np.hamming(N))

#####################################
Range-Time-Intensity (RTI) plot
inverse FFT. By default the ifft operates on the row v = ifft(s3)

#get magnitude
v = 20*np.log10(np.absolute(v)+1e-12)

#only the first half in each row contains unique information v = v[:,0:int(N/2)]

#normalized with respect to its maximum value so that maximum

is 0dB
m=np.max(v)
grid = v
grid=[[x-m for x in y] for y in v]

maximum range max_range =c*Fs*Tp/4/BW # maximum time
max_time = Tp*rows

plt.figure(0)
plt.imshow(grid, extent=[0,max_range,0,max_time],aspect='auto', cmap =plt.get_cmap('gray'))
plt.colorbar()
plt.clim(0,-100)
plt.xlabel('Range[m]',{'fontsize':20})
plt.ylabel('time [s]',{'fontsize':20})
plt.title('RTI with 2-pulse clutter rejection',{'fontsize':20}) plt.tight_layout()
plt.show()

#plt.subplot(612) #plt.plot(grid[5])

25

#plt.subplot(613) #plt.plot(grid[6])

#plt.subplot(614) #plt.plot(grid[20]) # #plt.subplot(615) #plt.plot(grid[30])

#plt.subplot(616) #plt.plot(grid[40])

26

