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Abstract: 
 

This project was split up into two quarters. During fall quarter, we built our own 
FMCW radar system given helpful guidance of lab manuals and TAs. This quarter, we 
implemented what we learned about the FMCW radar and attempted to design and 
build our own improved FMCW radar system. This 2.4 GHz system will be used in an 
outdoor environment to detect targets at various distances. Our goals for the radar 
system was to have low power consumption, low overall weight, and high accuracy.  
 
Design Rules/Scoring: 
 

1) Be able to detect a 0.3 x 0.3 m​2 ​target ranging from 5 meters to 50 meters 
2) Budget will be up to $300  
3) Scoring  
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Figure ( 1). Scoring Details 
 
Overall Design Details: 
 

 
Fig. () Block Diagram  
 

After creating our block diagram based off quarter 1 lab designs, we used 
ADIsimRF to calculate the gain of the transmitting and receiving power. We had to split 
the transmitting side and receiving side into two seperate ADI simulations. To 
implement both parts of the antenna, we found the desired component on websites 
such as Digikey or Mini-circuits. These websites had specific information about the 
components to help us determine the gain. Once we put all the components on the 
simulation, replaced some components to have no errors. The receiving and transmit 
antenna simulations are shown below. 
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Fig. () ADIsim for Transmitting Antenna  
 

 
Fig. () ADIsim for Receiving Antenna 
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Component Model Number URL 

LNA (1) HMC 639ST89E 
 

https://www.digikey.com/product-detail/en/analog-devices-inc/HMC639ST89E/112
7-3004-ND/5359984 

VCO  ROS-2490+ https://www.minicircuits.com/WebStore/dashboard.html?model=ROS-2490
%2B  

Mixer Sim-63LH+ https://www.minicircuits.com/WebStore/dashboard.html?model=SIM-63LH%2B 

LPF MAX291ESA+ 
 

https://www.digikey.com/product-detail/en/maxim-integrated/MAX291ESA/MAX291
ESA-ND/1513302 
 

Amplifier (Rx) #1 PGA-103  https://www.minicircuits.com/WebStore/dashboard.html?model=PGA-103%2B 

Amplifier (Tx) PGA-103 https://www.minicircuits.com/WebStore/dashboard.html?model=PGA-103%2B 

Amplifer (Rx) #2 MMG20241H https://www.mouser.com/productdetail/nxp-freescale/mmg20241ht1?qs=sGAEpiM
ZZMvlz5n0fllKWCPT5hyshv%2FsuQS0BdS5sXs%3D 

Antenna Yagi http://www.wa5vjb.com/pcb-pdfs/Yagi2400.pdf​ or 
http://www.wa5vjb.com/products2.html 

Splitter BP2U+ https://www.minicircuits.com/WebStore/dashboard.html?model=BP2U%2B 

Table () Component List 
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PCB Design: 
 

To design our pcb schematics, we used the datasheets based off the 
components we chose. Each component had a specific layout consisting of resistors, 
capacitors and inductors. The data sheet also gave us the specific values for them. 
Once we had our schematic prepared, we had to create the footprints of each 
component based off of the dimensions given in the datasheet. Luckily, we went 
through many pcb designs in the first quarter to know that creating the footprints 
correctly is a big deal because if it is wrong, it will be hard to solder the components on 
when the pcb board comes back. An important thing to remember is that all components 
that are not on the KiCad software requires a new footprint. Though KiCad may have 
some equivalent footprint design, there most likely is something that is different. As a 
caution, we created new footprints for each component we used to ensure the size on 
the PCB was correct.  

For our design, we chose to split the baseband and RF pcb into two seperate 
pcbs. This will allow us to test the two pcbs separately and will make it easier for us to 
troubleshoot when a problem arises. Also, if one were to not work, we wouldn't have to 
through the whole design away. We would be able to use the half that does work and 
build the other half based off of quarter one designs. 

As we designed the RF board, there were many things we had to take into 
consideration. The RF PCB contained the RF signals, which is very important in testing 
the radar system. So when designing, we had to make sure the traces for the RF board 
were completely straight as it can be to avoid loss in signal from sharp edges. When the 
board was complete, we added via fences to connect the top and bottom ground fills. 
This same process was repeated for the baseband PCB.  
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Fig. () RF Schematic  
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Fig. () Baseband Schematic  
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Fig. () RF PCB Layout 
 

 
Fig. () Baseband PCB Layout 
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Fig. () RF PCB Soldered  
 

 
Fig. () Baseband PCB Soldered 
 
 
 
Antenna Choice: 
 
Based off previous teams, we chose to go with the Yagi Antenna for our Transmitting 
Antenna and the coffee cans from quarter 1 as our Receiving antenna. This antenna 
gave our radar system a high gain. According to the Yagi datasheet, the antenna had a 
maximum signal of 10-11dBi at 2.4 GHz. However, when actually using the antenna, the 
bandwidth was a lot smaller than advertised. 
 

10 



 
Fig. () Yagi Antenna (Transmit) 
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Fig. () Coffee Can (Receive)  
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Final Design Testing: 
 

When we tested our RF pcb system in lab, we were able to amplify the signal as 
we moved a metal plate away and to the antennas. As shown in the figures below, the 
signal was a little messy but you can clearly see the signal does get larger in addition to 
the change in frequency. This made us believe our RF pcb board worked. 

When we tried to test our baseband pcb, we kept short circuiting the board. It 
was hard to determine what caused the short circuit because there were many 
possibilities such as the soldering touching, nodes connected to the wrong place in the 
pcb design, forgetting to ground a component, etc. This being the case, and time 
running out, we chose to not use the baseband design and to build our quarter 1 system 
to compete with.  
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Fig. () Setup Test of RF PCB in lab room 
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Fig. () Output of RF PCB with no plate 
 

 
Fig. () Output of RF PCB with plate 

15 



Testing the Gain stage: 

Figure () Input Signal with Vpp of 128.1mV 
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Figure () Vpp of the output of the gain stage of 3V 
Testing the LPF: 
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DAC Output: 
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Complete System Results 
 

We were able to produce a wav file from the quarter one system and run it 
through the python code to see the distances indoors but it didn’t quite work as well 
outdoors on the test day. 
 
 
 
Competition Day 
 

Due to the rain on the competition day, we were not able to get very accurate 
results on some of the measurements in addition to the system being just a remake of 
the quarter one system. Using the quarter one system, we were able to grab the wav file 
from the field test and find the distances to send to the TAs with the python code. 
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Fig. () Radar system set up 
 
 
Conclusion 
 

Our team learned a lot during this two quarter course. During the first quarter, our 
labs were guided so building the radar was quite simple since all the components and 
designs were given. Though we ran into problems with components not working, we 
were able to debug each section to determine where the problem occurred. In quarter 2, 
we realized that building a radar on our own without guidance is quite complicated. We 
had to decide our own components to use, and making sure each component had 
enough power to power the next component.  

We learned how to create a PCB and then improved on this skill by learning 
more about how each connection should be made. When testing the actual PCBs and 
breadboards, we knew to check every connection. This ensured that the physical board 
we had was what we designed on KiCad. When testing the radar system outside, we 
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noticed the system performs different than inside lab. However, we were able to get 
results and send them to the TAs for comparison after the competition. 
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Appendix 
 
Code to generate Sine wave from Triangle Wave 
 
/* 
Triangle wave and sync pulse generator to control a (0-5V input range) VCO for FMCW radar. 
The MPC4921 DAC is used to generate a triangle wave with a period of 40ms. 
PWM of the Arduino UNO is use to simultaneously generate the sync pulse, 
used for signal processing. 
*/ 
 
#include <SPI.h> // Include the SPI library  
 
int indexx = 0; 
bool flag = false; 
 
const int slaveSelectPin = 10; //set the slave select (chip select) pin number 
const int SYNC = 8;  //set the SYNC output pin number 
 
int outputValue[] = { 
  
}; 
 
 
void setup() 
{ 
    // Set pins for output 
    pinMode(SYNC, OUTPUT);                     // SYNC pin 
    digitalWrite(SYNC, LOW);               // Sync pulse low 
    pinMode(slaveSelectPin, OUTPUT);                    // Slave-select (SS) pin 
    SPI.begin();                            // Activate the SPI bus 
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    SPI.beginTransaction(SPISettings(16000000, MSBFIRST, SPI_MODE0));  // Set up the SPI 
transaction; this is not very elegant as there is never a close transaction action. 
} 
 
void loop() 
{ 
    if (indexx == 4096){ 
      indexx = 0; 
    } 
 
    if (outputValue[indexx] == 2048 || (flag && outputValue[indexx] == 2045)){ 
      digitalWrite(SYNC, !digitalRead(SYNC)); 
    } 
 
    if (outputValue[indexx] == 2045){ 
      flag = !flag; 
    } 
  
 
    byte HighByte =highByte(outputValue[indexx]);    // Take the upper byte 
    HighByte = 0b00001111 & HighByte;       // Shift in the four upper bits (12 bit total) 
    HighByte = 0b00010000 | HighByte;       // Keep the Gain at 1 and the Shutdown(active low) 
pin off 
    byte LowByte = lowByte(outputValue[indexx]);     // Shift in the 8 lower bits 
  
    digitalWrite(slaveSelectPin, LOW);  
    SPI.transfer(HighByte);            // Send the upper byte 
    SPI.transfer(LowByte);             // Send the lower byte 
digitalWrite(slaveSelectPin, HIGH); // Turn off the SPI transmission 
 
    indexx = indexx + 1; 
} 
 
Python Code 

    
# -*- coding: utf-8 -*- 
#range radar, reading files from a WAV file 
# Originially modified by Meng Wei, a summer exchange student (UCD GREAT Program, 2014) 
from Zhejiang University, China, from Greg Charvat's matlab code 
# Nov. 17th, 2015, modified by Xiaoguang "Leo" Liu, lxgliu@ucdavis.edu 

 
import wave 
import os 
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from struct import unpack import numpy as np 
from numpy.fft import ifft import matplotlib.pyplot as plt from math import log 

 
#constants 
c= 3E8 #(m/s) speed of light 
Tp = 20E-3 #(s) pulse duration T/2, single frequency sweep period. 
fstart = 2260E6 #(Hz) LFM start frequency 
fstop = 2590E6 #(Hz) LFM stop frequency 
BW = fstop-fstart #(Hz) transmit bandwidth 
trnc_time = 0 #number of seconds to discard at the begining of the wav file 

 
window = False #whether to apply a Hammng window. 

 
# for debugging purposes # log file 
#logfile = 'log_new.txt' #logfh = open(logfile,'w') #logfh.write('start \n') 

 
#read the raw data .wave file here 
#get path to the .wav file 
#filename = os.getcwd() + '\\running_outside_20ms.wav' filename = os.getcwd() + 
'\\range_test2.wav' # The initial 1/6 of the above wav file. To save time in developing the code 
#open .wav file 
wavefile = wave.open(filename, "rb") 

 
# number of channels 
nchannels = wavefile.getnchannels() 

 
# number of bits per sample sample_width = wavefile.getsampwidth() 

 
# sampling rate 
Fs = wavefile.getframerate() 
trnc_smp = int(trnc_time*Fs) # number of samples to discard at the begining of the wav file  

 
# number of samples per pulse 
N = int(Tp*Fs) # number of samples per pulse 

 
# number of frames (total samples) numframes = wavefile.getnframes() 

 
# trig stores the sampled SYNC signal in the .wav file #trig = np.zeros([rows,N]) 
trig = np.zeros([numframes - trnc_smp]) 
# s stores the sampled radar return signal in the .wav file #s = np.zeros([rows,N]) 

 
s = np.zeros([numframes - trnc_smp]) # v stores ifft(s) 
#v = np.zeros([rows,N]) 
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v = np.zeros([numframes - trnc_smp]) 
 

#read data from wav file 
 

data = wavefile.readframes(numframes) 
 

for j in range(trnc_smp,numframes): # get the left (SYNC) channel 
left = data[4*j:4*j+2] 
# get the right (Data) channel right = data[4*j+2:4*j+4] 

 
#.wav file store the sound level information in signed 16-bit integers stored in little-endian format 

 
#The "struct" module provides functions to convert such information to python native formats, in 
this case, integers. 

 
if len(left) == 2: 
l = unpack('h', left)[0] 

 
if len(right) == 2: 
r = unpack('h', right)[0] 

 
#normalize the value to 1 and store them in a two dimensional array "s" 

 
trig[j-trnc_smp] = l/32768.0 s[j-trnc_smp] = r/32768.0 

 
#trigger at the rising edge of the SYNC signal trig[trig < 0] = 0; 
trig[trig > 0] = 1; 

 
#2D array for coherent processing s2 = np.zeros([int(len(s)/N),N]) 

 
rows = 0; 
for j in range(10, len(trig)): 

 
if trig[j] == 1 and np.mean(trig[j-10:j]) == 0: if j+N <= len(trig): 

 
s2[rows,:] = s[j:j+N] rows += 1  

 
s2 = s2[0:rows,:] 

 
#pulse-to-pulse averaging to eliminate system performance drift overtime 
for i in range(N): 

 
s2[:,i] = s2[:,i] - np.mean(s2[:,i]) #2pulse cancelation 
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s3 = s2 
for i in range(0, rows-1): 

 
s3[i,:] = s2[i+1,:] - s2[i,:] 

 
rows = rows-1 s3 = s3[0:rows,:] 

 
#apply a Hamming window to reduce fft sidelobes if window=True 
if window == True: 

 
for i in range(rows): s3[i]=np.multiply(s3[i],np.hamming(N)) 

 
##################################### 
# Range-Time-Intensity (RTI) plot 
# inverse FFT. By default the ifft operates on the row v = ifft(s3) 

 
#get magnitude 
v = 20*np.log10(np.absolute(v)+1e-12) 

 
#only the first half in each row contains unique information v = v[:,0:int(N/2)] 

 
#normalized with respect to its maximum value so that maximum  

 
is 0dB 
m=np.max(v) 
grid = v 
grid=[[x-m for x in y] for y in v] 

 
# maximum range max_range =c*Fs*Tp/4/BW # maximum time 
max_time = Tp*rows 

 
plt.figure(0) 
plt.imshow(grid, extent=[0,max_range,0,max_time],aspect='auto', cmap =plt.get_cmap('gray')) 
plt.colorbar() 
plt.clim(0,-100) 
plt.xlabel('Range[m]',{'fontsize':20}) 
plt.ylabel('time [s]',{'fontsize':20}) 
plt.title('RTI with 2-pulse clutter rejection',{'fontsize':20}) plt.tight_layout() 
plt.show() 

 
#plt.subplot(612) #plt.plot(grid[5]) 
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#plt.subplot(613) #plt.plot(grid[6]) 
 

#plt.subplot(614) #plt.plot(grid[20]) # #plt.subplot(615) #plt.plot(grid[30]) 
 

#plt.subplot(616) #plt.plot(grid[40])  
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