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Design 
Design Specification 

● Range from 5m to 50m 
● $300 Budget 
● Frequency Modulated Continuous Wave Radar 

 
Project option 

We chose accuracy as our first priority in this design. We generally followed 
the system schematic of last quarter. Initially, we wanted to use a microcontroller 
to do on-board signal processing; however, the microcontroller we chose, CC3200, 
did not have enough memory space to do necessary signal processing, so we 
changed back to use computer. We also decide to experiment with two yagi 
antennas. However, we also had a plan of using one or two coffee can antennas as 
back up. 

 
Component selection 

Baseband PCB 
The new radar system would be built upon quarter 1 design. Therefore, the 

functions of baseband circuit included conversion from 8 volt to 5 volt, generation 
of triangle wave for VCO and a low pass filter and a gain stage for output signal 
from mixer. In addition, the circuit also needed to convert 8 volt to 3.3 volt which 
is the voltage supply for the microcontroller, CC3200. With the knowledge on the 
functions of baseband circuit, we designed the circuit based on the circuit form 
lab1 manual from quarter 1. We decided to not change components for low pass 
filter and gain stage, since the given designed circuit on lab1 manual is refined and 
the required resistors were already provided by the lab. There is no need to order 
new SMD resistors and op-amps. 

RF PCB 
To simplify the circuit and debugging process, we chose to purchase highly 

integrated components instead of building on discrete components. To accomodate 
for the increased range and different antennas compared to quarter one, we picked 
LNAs to provide the gain needed for the transmitter and receiver. We then selected 
our components according to the gain and frequency specification. 



Block Diagram 

 
Fig 1: block diagram of radar system 

 
 
ADI Simulations 
Transmitting system (power approximation) 

 
Fig 2: ADI simulation of transmitter 



Receiving system (power approximation) 
5m 

 
Fig 3: ADI simulation of receiver at 5m 

 
50m 

 
Fig 4: ADI simulation of receiver at 50m 



Implementation 
Baseband 

Schematic 
The first part of baseband circuit is the conversion of voltages. The detailed 

schematic is shown in Fig 5. 

 
Fig 5: voltage conversion circuit 

In this part, LM317 adjustable voltage regulator is used to convert 8 volt to 5 
volt. And LT1009 2.5v voltage reference is used to generate 2.5 volt as the biased 
voltage for low pass filter and gain stage and the reference voltage for DAC which 
converts digital signal from teensy to analog signal. In addition, LM2937 3.3v is 
used to convert 8 volt to 3.3 volt as voltage supply for CC3200. The circuit is 
based on the evaluated circuit shown on the data sheet.  

Fig 6 shows the low pass filter and gain stage design. 

 
Fig 6: low pass filter and gain stage  

There is no significant change on this part compared to quarter 1. The 
noticeable change is that the output signal is connected to an LED which prevents 
output voltage from exceeding 1.4 volt, the maximum input voltage for CC3200 
ADC. 



For Teensy and MCP4921 (DAC), the schematics are the same as quater1. 
The following graph is the overall schematic. 

 
Fig 7: overall baseband schematic 

Footprint 
After schematic design, we needed to create footprint for each component. 

The rule of thumb is that carefully review the PCB design the PCB footprint 
provided on the datasheet and make sure it is bottom view or top view. It is 
important to know the unit on the datasheet is mm or inch. In addition, assigning 
each pad the correct pin number is required, because later when laying out the 
PCB, the track net is based on the pin number on the footprint and the pin number 
on schematic. Make sure the two pin numbers are matched. Furthermore, using 
non-copper line to outline the approximate size of the components can help to 
define the distance between each component when doing PCB layout. 

 
 Layout 
At first, we outlined a fixed size (1.5inch by 2.5inch) for my baseband PCB 

to make sure RF and baseband PCBs have the same size. The, load netlist to the 
layout window. Based on netlist to place the components. Using track via can help 
avoid cross of tracks. And use fill zone to fill ground is a good way to save tracks 
from grounding. Before, upload the PCB design, it is necessary to refill zone. 

 



Stacking 
For good connection between two PCBs, we choose to use stack two PCBs 

together. The stacking PCB is shown in Fig 8. 

 
Fig 8: stacked PCB 

 

First, we created three pins: VCO input, ground and 5 volt on the top left 
corner. And make sure the positions of pins are the same as the positions of pins on 
the RF band. Using larger grid makes the position matching easier. Then, to make 
sure the RF PCB can support baseband PCB, we created several ground pins at 
other three corners. The final PCB layout is shown below in Fig 9. 

 
Fig 9: final baseband PCB layout 

 
Assembling 
The first step to assembly the PCB is to collect all needed components and 

mark each component correctly. Then, based on the PCB design file, we soldered 
each component on its place. Personally, placing solder paste to all the SMD 



copper sections and then place the components is the most efficient way to 
assembly a PCB. 

The first soldered PCB is shown below in Fig 10. 

 
Fig 10: soldered PCB 

 We used normal female pin headers for Teensy, op-amp, DAC and 
potentiometers. And then we test this baseband PCB. It works fine. Later, when we 
stacked the baseband PCB on the RF PCB and tested the whole system, we had 
troubled on our baseband PCB. Since the potentiometers have very thin pin, the 
contacts between potentiometers and pin headers are loose. Also, there are loose 
contacts between op-amp pin headers. Therefore, we decided to re-soldered 
baseband PCB. 

We used “14 Position Pin Standard Circular Connector” for op-amp and “8 
Position Pin Standard Circular Connector” for DAC to avoid loose contacts. Also, 
we directly soldered potentiometers on PCB. Fig 11. below shows the re-soldered 
PCB. 

 
Fig 11: re-soldered PCB 

This re-soldered PCB worked much better than the old one. 
 
  



RF PCB 
Schematic 
The schematic of the RF PCB looks similar to quarter one RF system, Fig 

12. I placed the transmitter on top and receiver on bottom to easily differentiate 
from them. I also placed capacitors between vcc and gnd and between some 
components. Capacitors between vcc and gnd are called decoupling or bypass 
capacitors and they are used to decouple the AC signal from power supply and 
protect the circuit. On the other hand, capacitors in between RF components can 
block the DC offset. 

 

 
Fig 12.. RF PCB schematic 

 
Footprint 
The next task is creating custom-designed footprints. Because KiCAD likely 

does not have the correct footprints for the component and you should not trust 
footprints on the internet, so it is safest to create your own footprints. Study the 
outline drawing and outline dimensions on the datasheet. Having correct footprint 
is essential to the success of PCB, double check and triple check if necessary. Fig 
13 below shows an example of a VCO footprint.  



 
Fig 13: an example of VCO footprint 

 
PCB Layout 
In Schematic editor, click  generate netlist. Then open Pcbnew and click 

read netlist. After that, you should see all the components stacked together in one 
place. Use right click -> Move or keyboard shortcut M to separate them and place 
them in the desired location. Note that you can change the layout any time in the 
future, so it is not necessary to decide the location of each component in the 
beginning. 

On RF PCB, there are two types of traces you should distinguish between, 
low frequency (or DC) signal paths and high frequency signal paths. In my design, 
the only low frequency and DC signals are the V-tune signal from baseband PCB 
and VCC power lines. Other traces are all high frequency RF (2.4 GHz) signals in 
transmitter and receiver. For low frequency signals, you do not need to worry too 
much about the track width as long as they are not too thin. However, for high 
frequency RF signal traces, you do have to pay attention to the track width and 
length. 

Track width for RF signal is important because we need to have a 50 Ω 
transmission line to minimize signal reflection. To determine the RF track width, 
use the built-in PCB calculator in KiCAD, shown in Fig 14. I chose to use 
Coplanar wave guide with ground plane because it gives relatively thin traces 
compared to having Microstrip lines. Note that you need to fill the top plate with 
ground for this method to work. First enter the substrate parameters given by the 
TA. On the right-hand side in Physical parameter, you can select W and S values 



and calculate Z0. Conversely, you can specify Z0 and one of W and S parameters 
to calculate the other.  

 
Fig 14: PCB calculator 

At first, I tried to use 6 mil (minimum copper to copper width of Bay Area 
Circuit) as the separation. However, the DFM reported less than 6 mil (5.45mil) 
copper to copper width and never passed the DFM check, Fig 15. This is due to the 
fact that some copper fills do not have smooth round edges and the actually 
clearance is less than 6 mil. In the end, I switched to 7 mil clearances and passed 
the DFM check. 

 
Fig 15: DFM min. Spacing error 

In addition to selecting the correct track width, designing short and straight 

RF traces is another important thing to consider. Long and bending RF traces can 

create loss in the signal. Therefore, I centered the design of my RF PCB and 



placement of components around achieving the shortest and never bending RF 

traces. Below is the final RF PCB design, Fig 16. 

 
Fig 16. Final RF PCB layout 

When placing the components, it is also helpful to use different grid sizes to 
line up pads of two adjacent components. Otherwise, the traces might have a very 
small bend at one end. When placing the via fences, use array tool to save time. 
Although there is no exact rule to how far via fences should be placed from the 
signal trace, I recommend leaving some space between via fences and track. I also 
created 4 sets of through-holes on each corner to connect to baseband PCB via pin 
headers. Vcc and V-tune signals are placed on the top left and IF signal is placed 
on lower right, with other connections connected to gnd. Having extra ground 
connections between RF and baseband PCB provides better electrical and 
mechanical stability so it is highly recommended. 

 
Soldering 
When soldering, one critical thing to pay attention to is having the correct 

orientation of components. For example, the VCO we used has a square footprint 
so it is easy to mistaken the orientation. So always consult the datasheet before 
placing down the component. In addition, some components can be very small (for 



example our signal splitter), so be extra careful when applying solder paste to make 
sure that pads are not shorted together. Fig 17 shown below is the soldered RF 
PCB. 

 
Fig 17: soldered RF PCB  

 
Testing  
RF band circuit: ​First step is to verify the transmitter part, which includes             
voltage-controlled oscillator (VCO), attenuator, low noise amplifier (LNA) and         
splitter. Based on our power budget calculation, we are expecting to get a power of               
15.9dBm ideally at the antenna. Power on the RF circuit, set the Vtune to 5V, we                
are able to get 13.7dBm power (excluding 0.3dBm loss of SMA cables) measured             
by spectrum analyzer shown in Fig 18. Thus, it’s reasonable to say that the              
transmitter is working properly.  



 
Fig 18: power measured at transmitter 

Also, the VCO sensitivity is measured to get accurate result for the use of signal 
processing. As we change the Vtune, the output frequency changes accordingly as 
shown in Fig 19, where the relationship is pretty linear with a sensitivity of 
33.1MHz/V. 

 
Fig 19: relation between Vtune and output frequency of VCO 

To test the receiver part, which includes LNA and mixer, we set the Vtune to a                
specific DC (5V here), and use TPI synthesizer to generate a power of -35dBm at               
2.47GHz. Taking LNA gain and mixer conversion loss into consideration, we are            
able to get -12.4dBm power at 100MHz as expected. So far, our RF works fine.

 
Baseband circuit: ​The baseband circuit should be able to give desired gain and             
sufficient bandwidth. Before we have mentioned the sensitivity of VCO to be            
33.1MHz/V, Vtune is a 6 to 8V triangle wave at 25Hz. So the maximum frequency               



that is fed in the baseband circuit would be (this happens when target is 50m               
away): 

 
When we feed in a 100mVpp sinusoidal signal to baseband signal, the gain is              
adjusted to 40 at 1KHz (remain almost same for lower frequency), which results in              
a 4Vpp output. Vpp reduces to 2.8V when input frequency is around 6KHz. Thus,              
the bandwidth of the baseband circuit is 6 times of the Fmax, which is sufficient               
for this system.  
Whole system testing: 

We then compared the performance of baseband + RF PCB system (Fig 20a) 
against baseband PCB + quarter 1 RF system (Fig 20b). We found that baseband + 
quarter 1 RF system generally produced a cleaner graph than baseband + RF PCB. 
However, because the quarter 1 RF system is noticeably heavier than the RF PCB, 
we opted for the stacked baseband + PCB combination as planned in the beginning.  

We also tested three combinations of antenna combinations: two yagi 
antennas, one coffee can on transmitter and one yagi on receiver, and two coffee 
cans. As a result, two-yagi-antenna combination produced very poor result. This is 
due to the fact that yagi antenna has worse directivity than coffee can. One coffee 
can and one yagi antenna combination produced similar results as two coffee cans. 
Therefore, we chose one coffee can and one yagi antenna as our final design 
because this system is significantly lighter than two coffee can setup. 

       



(a) (b) 
Fig 20: two system combinations 

Result 
Our whole radar system is shown below in Fig 21. We used a piece of 

styrofoam as the base because it is light and can provide the necessary mechanical 
support for the whole system. We used electric tape to secure all components and 
wires in place.  

 
Fig 21: Whole radar system 

Final testing result 



 
Fig 22: Testing result generated from wav file 

Test result 
 

Actual Distance Our Measurement 

43.7388 44.88 

33.2232 34.27 

22.86 24.07 

14.478 15.1 

7.3152 7.75 
 
Discussion 

From one quarter of designing, assembling and testing, we learned that 
building a fully working radar system requires a lot of hard work and thinking. We 
also learned to test each sub systems and come up with ways to test them to make 
sure they work before testing the whole system. Sometimes, even when all sub 
systems seem to be working, the whole system might not work in the way we like 
it to be. The key was to keep testing while making modifications to the system, 



such as adjusting the gain in baseband circuit or modifying a piece of code to make 
sure all subsystems not only work on their own but also work together as a whole.  

Mistakes are bound to happen when designing a new system, but it is 
important to come up with solutions or remedies to the situation. Whether it is to 
add a wire, re-solder a PCB, redesign a new PCB or use the back-up system, we 
need to consider the severity of the situation and time allowed. I think we learned a 
lot about fixing our mistakes throughout the design of the radar system. 

Even though we decided to do on-board processing at the beginning of 
quarter and able to find the frequency using FFT, we found out that the our current 
algorithm cannot detect the distance due to the system we are using has to involve 
some doppler feature. After reading the python code provided in quarter 1 and the 
matlab code from Team One in year 2016-2017, we figured out that we need to 
sample multiple set of samples and do dynamic frequency calculation to find out 
the distance. The processing time would be too long to capture all distance changes 
of the TA with on-board process. Thus, we decided to switched to matlab code 
from Team One and instead of using “real-time” which periodically record audio 
and perform processing, we decided to using audacity to record the entire motion 
of the TA and perform process for the entire recording. We actually did field test 
using rulers to measure distance and calibrated our coefficient to match the actual 
distance measured. However, due to the line generated from the wav file have a 
length corresponding to field distance of 3 meters (from the left of line to the right 
of line on the same horizontal level), our final result still have error due to the 
actual point selected on the graph. 

 
 

 
BOM 
 

Component Model 

Unit 

Price 

Quantity 

used Price 

Quantity 

to order Price Link 

VCO 

ROS-2536

C-199+ $ 23.95 1 $23.95 2 $47.90 

https://www.minicircu

its.com/WebStore/das

hboard.html?model=R

OS-2536C-119%2B 



Attenuator LAT 3+ $ 2.15 2 $4.30 2 $4.30 

https://www.minicircu

its.com/WebStore/das

hboard.html?model=L

AT-3%2B 

LNA 

TAMP-27

2 LN+ $ 14.95 3 $44.85 5 $74.75 

https://www.minicircu

its.com/WebStore/das

hboard.html?model=T

AMP-272LN%2B 

Splitter 

Anaren 

PD2328J5

050S2HF $ 0.74 1 $0.74 2 $1.48 

https://www.digikey.c

om/product-detail/en/

anaren/PD2328J5050S

2HF/1173-1098-1-ND/

3069297 

Mixer 

ADE-R3GL

H $ 4.85 1 $4.85 2 $9.70 

https://www.minicircu

its.com/WebStore/das

hboard.html?model=A

DE-R3GLH%2B 

Amplifier TL974IN $ 0.98 3 $2.94 6 $5.88 

https://www.digikey.c

om/products/en?mpar

t=TL974IN&v=296 

Yagi 

Antenna  $ 6.00 2 $12.00 2 $12.00 

http://wa5vjb.com/pr

oducts2.html 

Voltage 

regulator LM2937 $ 1.69 1 $1.69 2 $3.38 

https://www.digikey.c

om/product-detail/en/

texas-instruments/LM

2937ET-5.0-NOPB/LM

2937ET-5.0-NOPB-ND/

212651 

Diode 

VSMF289

3RGX01C

T-ND $ 1.09 1 $1.09 2 $2.18 

https://www.digikey.c

om/product-detail/en/

vishay-semiconductor-

opto-division/VSMF28

93RGX01/VSMF2893R

GX01CT-ND/5323940 

        

Total    $96.41  $161.57  

 
CC3200 Code  



 

// Standard includes 
#include <string.h> 
#include <stdint.h> 
#include <stdlib.h> 
#include <stdbool.h> 
#include <math.h> 
 
// Driverlib includes 
#include "utils.h" 
#include "hw_memmap.h" 
#include "hw_common_reg.h" 
#include "hw_types.h" 
#include "hw_adc.h" 
#include "hw_ints.h" 
#include "hw_gprcm.h" 
#include "rom.h" 
#include "rom_map.h" 
#include "interrupt.h" 
#include "prcm.h" 
#include "uart.h" 
#include "pin_mux_config.h" 
#include "pin.h" 
#include "adc.h" 
#include "adc_userinput.h" 
#include "uart_if.h" 
#include "gpio.h" 
 
#include "complex.h" 
#include "spi.h" 
#include "Adafruit_GFX.h" 
#include "Adafruit_SSD1351.h" 
#include "test.h" 
#include "coeff.h" 
 
#define USER_INPUT  
#define UART_PRINT         Report 
#define FOREVER            1 
#define APP_NAME           "ADC Reference" 
#define NO_OF_SAMPLES       1024 
 
#define PI 3.1415926535897932384626434 
#define GP_base GPIOA2_BASE 
#define GP_pin 0x40 



 
unsigned char GP_flag; 
unsigned long pulAdcSamples[1024]; 
double result[1024]; 
short sample[1024]; 
 
#define MASTER_MODE      1 
 
#define SPI_IF_BIT_RATE  100000 
 
 
//*************************************************************************** 
//                      GLOBAL VARIABLES 
//*************************************************************************** 
#if defined(ccs) 
extern void (* const g_pfnVectors[])(void); 
#endif 
#if defined(ewarm) 
extern uVectorEntry __vector_table; 
#endif 
 
/***************************************************************************/ 
/*                      LOCAL FUNCTION PROTOTYPES                           */ 
/***************************************************************************/ 
static void BoardInit(void); 
//static void DisplayBanner(char * AppName); 
static void FFT_CooleyTukey(int N, int N1, int N2); 
static void GPIntHandler(void); 
//*************************************************************************** 
// 
//! Application startup display on UART 
//! 
//! \param  none 
//! 
//! \return none 
//! 
//*************************************************************************** 
/* 
static void 
DisplayBanner(char * AppName) 
{ 
    Report("\n\n\n\r"); 
    Report("\t\t *************************************************\n\r"); 
    Report("\t\t       CC3200 %s Application       \n\r", AppName); 



    Report("\t\t *************************************************\n\r"); 
    Report("\n\n\n\r"); 
} 
*/ 
//*************************************************************************** 
// 
//! Board Initialization & Configuration 
//! 
//! \param  None 
//! 
//! \return None 
// 
//*************************************************************************** 
static void 
BoardInit(void) 
{ 
/* In case of TI-RTOS vector table is initialize by OS itself */ 
#ifndef USE_TIRTOS 
    // 
    // Set vector table base 
    // 
#if defined(ccs) 
    MAP_IntVTableBaseSet((unsigned long)&g_pfnVectors[0]); 
#endif 
#if defined(ewarm) 
    MAP_IntVTableBaseSet((unsigned long)&__vector_table); 
#endif 
#endif 
    // 
    // Enable Processor 
    // 
    MAP_IntMasterEnable(); 
    MAP_IntEnable(FAULT_SYSTICK); 
 
    PRCMCC3200MCUInit(); 
} 
//*************************************************************************** 
static void 
Total_Initial(void) { 
    // Enable the SPI module clock 
    MAP_PRCMPeripheralClkEnable(PRCM_GSPI,PRCM_RUN_MODE_CLK); 
    // Reset the peripheral 
    MAP_PRCMPeripheralReset(PRCM_GSPI); 
    // Reset SPI 



    MAP_SPIReset(GSPI_BASE); 
    // Configure SPI interface 
    MAP_SPIConfigSetExpClk(GSPI_BASE,MAP_PRCMPeripheralClockGet(PRCM_GSPI), 
                               SPI_IF_BIT_RATE,SPI_MODE_MASTER,SPI_SUB_MODE_0, 
                               (SPI_SW_CTRL_CS | 
                               SPI_4PIN_MODE | 
                               SPI_TURBO_OFF | 
                               SPI_CS_ACTIVEHIGH | 
                               SPI_WL_8)); 
    MAP_SPIEnable(GSPI_BASE); 
    Adafruit_Init(); 
    fillScreen(BLACK); 
    setTextColor(BLUE,1); 
 
    // Configure ADC timer which is used to timestamp the ADC data samples 
    MAP_ADCTimerConfig(ADC_BASE,2^17); 
 
    // Register the interrupt handlers 
    MAP_GPIOIntRegister(GP_base, GPIntHandler); 
 
    // Configure rising edge interrupts on SW2 and SW3 
    MAP_GPIOIntTypeSet(GP_base, GP_pin, GPIO_RISING_EDGE); 
 
} 
 
//*************************************************************************** 
//** GP_IntHandler 
//*************************************************************************** 
static void GPIntHandler(void) { 
    unsigned long ulStatus; 
    ulStatus = MAP_GPIOIntStatus (GP_base, true); 
    MAP_GPIOIntClear(GP_base, ulStatus); // clear interrupts 
    GP_flag = 1; 
} 
 
 
//*************************************************************************** 
//** Implements the Cooley-Tukey FFT algorithm. 
//*************************************************************************** 
static 
void FFT_CooleyTukey(int N, int N1, int N2) { 
    int k1, k2; 
    int k, n; 
    /* Allocate columnwise matrix */ 



    signed long long** columns_real = (signed long long**) malloc(sizeof(signed long long*) * 
N1); 
    for(k1 = 0; k1 < N1; k1++) { 
        columns_real[k1] = (signed long long*) malloc(sizeof(signed long long) * N2); 
    } 
 
    /* Reshape input into N1 columns */ 
    for (k1 = 0; k1 < N1; k1++) { 
        for(k2 = 0; k2 < N2; k2++) { 
            columns_real[k1][k2] = (signed long long) sample[N1*k2 + k1]; 
        } 
    } 
 
    complex** columns = (complex**) malloc(sizeof(struct complex_t*) * N1); 
    for(k1 = 0; k1 < N1; k1++) { 
        columns[k1] = (complex*) malloc(sizeof(struct complex_t) * N2); 
    } 
 
    /* Compute N1 DFTs of length N2 using naive method */ 
    for (k1 = 0; k1 < N1; k1++) { 
        //columns[k1] = DFT_naive(columns[k1], N2); 
        for(k = 0; k < N2; k++) { 
            columns[k1][k].re = 0; 
            columns[k1][k].im = 0; 
            for(n = 0; n < N2; n++) { 
                columns[k1][k].re = columns[k1][k].re + columns_real[k1][n] * cos_Naive[k][n]; 
                columns[k1][k].im = columns[k1][k].im + columns_real[k1][n] * sin_Naive[k][n]; 
            } 
        } 
            free(columns_real[k1]); 
    } 
    free(columns_real); 
 
    /* Allocate rowwise matrix */ 
    complex ** rows = (complex**) malloc(sizeof(struct complex_t*) * N2); 
    for(k2 = 0; k2 < N2; k2++) { 
        rows[k2] = (complex*) malloc(sizeof(struct complex_t) * N1); 
    } 
 
    /* Multiply by the twiddle factors  ( e^(-2*pi*j/N * k1*k2)) and transpose */ 
    for(k1 = 0; k1 < N1; k1++) { 
        for (k2 = 0; k2 < N2; k2++) { 
            rows[k2][k1].re = (columns[k1][k2].re*cos_twiddle[k1][k2] - 
columns[k1][k2].im*sin_twiddle[k1][k2]) >> 14; 



            rows[k2][k1].im = (columns[k1][k2].re*sin_twiddle[k1][k2] + 
columns[k1][k2].im*cos_twiddle[k1][k2]) >> 14; 
        } 
        free(columns[k1]); 
    } 
    free(columns); 
 
    complex* X_row = (complex*) malloc(sizeof(struct complex_t) * N1); 
    /* Compute N2 DFTs of length N1 using naive method */ 
    for (k2 = 0; k2 < N2; k2++) { 
        //rows[k2] = DFT_naive(rows[k2], N1); 
        for(k = 0; k < N1; k++) { 
            X_row[k].re = 0.0; 
            X_row[k].im = 0.0; 
            for(n = 0; n < N1; n++) { 
                X_row[k].re = X_row[k].re + ((rows[k2][n].re*cos_Naive[k][n] - 
rows[k2][n].im*sin_Naive[k][n]) >> 14); 
                X_row[k].im = X_row[k].im + ((rows[k2][n].im*cos_Naive[k][n] + 
rows[k2][n].re*sin_Naive[k][n]) >> 14); 
            } 
        } 
        for(n = 0; n < N1; n++) rows[k2][n] = X_row[n]; 
    } 
    free(X_row); 
 
    /* Flatten into single output */ 
    for(k1 = 0; k1 < N1; k1++) { 
        for (k2 = 0; k2 < N2; k2++) { 
            result[N2*k1 + k2] = mag(rows[k2][k1]); 
        } 
    } 
 
    for(k2 = 0; k2 < N2; k2++) free(rows[k2]); 
    free(rows); 
 
    return; 
} 
 
 
 
 
//*************************************************************************** 
// 
//! main - calls Crypt function after populating either from pre- defined vector  



//! or from User 
//! 
//! \param  none 
//! 
//! \return none 
//! 
//*************************************************************************** 
void  
main() 
{ 
 
    // Initialize Board configurations 
    BoardInit(); 
    PinMuxConfig(); 
    Total_Initial(); 
    int i; 
    unsigned int  uiChannel = ADC_CH_3; 
    unsigned long ulSample; 
    unsigned long ulStatus; 
    unsigned char sample_flag = 0; 
    unsigned short max_index; 
    double max_val; 
    int freq; 
    GP_flag = 0; 
    char frequency[4]; 
 
    ulStatus = MAP_GPIOIntStatus(GP_base, false); 
    MAP_GPIOIntClear(GP_base, ulStatus); 
    MAP_GPIOIntEnable(GP_base, GP_pin); 
 
    while(FOREVER) 
    { 
        if (GP_flag > 0){ 
            MAP_GPIOIntDisable(GP_base, GP_pin); 
            fillRect(0,0,40,40, BLACK); 
            setCursor(0, 0); 
            Outstr("start"); 
 
#ifdef CC3200_ES_1_2_1 
        // Enable ADC clocks.###IMPORTANT###Need to be removed for PG 1.32 
        HWREG(GPRCM_BASE + GPRCM_O_ADC_CLK_CONFIG) = 0x00000043; 
        HWREG(ADC_BASE + ADC_O_ADC_CTRL) = 0x00000004; 
        HWREG(ADC_BASE + ADC_O_ADC_SPARE0) = 0x00000100; 
        HWREG(ADC_BASE + ADC_O_ADC_SPARE1) = 0x0355AA00; 



#endif 
 
            // Enable ADC timer which is used to timestamp the ADC data samples 
            MAP_ADCTimerEnable(ADC_BASE); 
 
            // Enable ADC module 
            MAP_ADCEnable(ADC_BASE); 
 
            // Enable ADC channel 
            MAP_ADCChannelEnable(ADC_BASE, uiChannel); 
 
            i = 0; 
            sample_flag = 0; 
            while (i < 1024){ 
                if(MAP_ADCFIFOLvlGet(ADC_BASE, uiChannel)) { 
                    ulSample = MAP_ADCFIFORead(ADC_BASE, uiChannel); 
                    sample_flag++; 
                    if (sample_flag == 20){ 
                        pulAdcSamples[i] = ulSample; 
                        i++; 
                        sample_flag = 0; 
                    } 
                } 
            } 
 
            MAP_ADCChannelDisable(ADC_BASE, uiChannel); 
 
            for (i=0;i<1024;i++) sample[i] = ((pulAdcSamples[i] >> 2 ) & 0x0FFF); 
 
            //for (i=0;i<1024;i++) sample[i] = (signed short) (cos(0.02*i)*5+5); 
            FFT_CooleyTukey(1024, 32, 32); 
            max_val = result[1]; 
            max_index = 1; 
            for (i=2;i<512;i++){ 
                if (result[i] > max_val){ 
                    max_index = i; 
                    max_val = result[i]; 
                } 
            } 
            freq = max_index * 3125 / 1024; 
            frequency[0] = 48+freq/1000; 
            frequency[1] = 48 + (freq%1000)/100; 
            frequency[2] = 48 + (freq%100)/10; 
            frequency[3] = 48 + (freq%10); 



            setCursor(0, 10); 
            Outstr(frequency); 
            setCursor(0, 20); 
            Outstr("end"); 
 
            GP_flag--; 
            if (GP_flag==0) { 
                ulStatus = MAP_GPIOIntStatus(GP_base, false); 
                MAP_GPIOIntClear(GP_base, ulStatus); 
                MAP_GPIOIntEnable(GP_base, GP_pin); 
            } 
        } 
    } 
} 

 


