
MARCH 2018 TEAM: KOBE 1

Final group report
Brian Ratledge, Hui-Ying Siao, John Villahermosa, and Bryant Vu

Abstract—The radar system operates at 2.4GHz and uses a
frequency modulated continuous wave (FMCW) to determine
the range of objects at distance. The waves are generated by the
RF circuit and blasted out the transmitter at the metal plate
target. The signals are then reflected back towards the receiver
and processed to determine the distance of the plate. In the span
of a single quarter we went through the process of building a
full radar system. This involved selecting suitable components,
designing the PCB, assembling the system, and lastly testing out
the radar to debug the problems to reach the end goal of the
project.

I. INTRODUCTION

With its roots in the radar we built in Quarter 1, our system
is redesigned with different components in order to improve
upon its efficiency and performance. Within a limited time,
we chose components and designed the circuit schematic with
the reference of component datasheets. The block diagram of
the radar system is shown in Fig.1, the target is a metal plate
used on the competition day to reflect the signals transmitting
from a Yagi antenna.

Fig. 1. RF Block Diagram

II. COMPONENT SELECTIONS

There are devices and components with certain specifi-
cations and performance parameters. Since the system level
design results in the determination of the components, the
component selection is important. The safety range value of
all the parameters of all terminals, inputs and outputs should
be set at first. The best matched component should be chosen
based on its specifications from the datasheet. Table 1 shows
the components and its model number that we selected for the
final design.

In order to calculate the gain of the transmitting and
receiving power, ADIsim was used to simulate the theoretical
values. We obtained a theoretical output power of -35.8 dBm.
The simulations for the transmitter and receiver are shown in
Fig.2 and Fig.3.

Fig. 2. RF Component List

Fig. 3. Receiver Simulation

III. PCB DESIGNS

With the selection of the RF components complete, we
spent considerable time fine-tuning our PCB layouts until
we were satisfied enough to place the fabrication order. The
footprints of the PCB designs are based on the datasheets of
the components provided on Table1. In Fig.5 and Fig.6 are
the RF and baseband schematics and the layouts. For our
PCB designs, we used Circuit Maker to create the circuit
schematics and PCB board layouts, as shown in Fig.7 and
Fig.8. In addition, the layout of passives is also based on
the component datasheets. In order to realize the on-board
processing, we used the Raspberry Pi 3 to generate the SYNC
and Vtune signals as well as process the received signals.

MARCH 2018 TEAM: KOBE 2

Fig. 4. Transmitter Simulation

Fig. 5. RF Schematic

IV. ANTENNAS

The transmitting and receiving antennas play major roles in
the radar system. In order to obtain high gain signals, the Yagi
PCB antenna, as shown in Fig.10, was chosen for the radar
system with a max signal of 10-11dBi from 2400 to 2450
MHz.

V. TESTING RESULTS

In order to test the system and to make sure it would work
properly, we tested our system in front of Kemper Hall before
the competition day. On the day of the test we compared
the difference between the Yagi antennas and the coffee cans
we used as antennas in quarter one, the results are shown in
Fig.11 and Fig.12. Analysis of the two results from coffee
cans and Yagi antennas reveal that the signals from the Yagi
antenna were not showing as obvious of an improvement as
we expected. The reason for this was that we were directly
holding the antennas, when ideally the antenna should be
mounted to a frame since holding the antenna can affect the
performance. Similar to the wood board of the Quarter 1
system, we mounted the Yagi antennas to a length of foam.

In order to optimize the signals and avoid interference from
nearby structures, the testing location was at the Hutchison
field to the south of the ARC Pavilion, as shown in Fig. 13. We
were using on-board processing to obtain the data, as shown

Fig. 6. Baseband Schematic.

Fig. 7. Baseband layout.

in Fig. 14, and the code for each of these parts can be seen
in the Appendix of this report.

On the competition day, we did not get ideal results.
The results we got were extremely noisy, and we could not
differentiate the distance accurately. The reason for this was
mainly due to the low resolution of the signals generated
by Raspberry pi. After fixing the resolution problem of the
Raspberry pi, we went to Hutchison and retested the results.
However, the results, as shown in Fig. 15, did not present a
result as we expected.

Realizing that we could not program Raspberry pi to op-
timize the signals in a limited time, we went back to using
the Teensy instead and the result is shown in Fig. 16 and Fig.
17 show the results using coffee cans as quarter one and Fig.
shows the one using Yagi antennas. The distance from the
target and the antennas were about 7.3, 15.2, 21.3, 30.5, and
45.7 meters, which correspond well to our record. The longest
distance of the testing was about 90 meters, as shown in Fig.
18.

VI. CONCLUSION

In this report, we present the components selections, PCB
designs, testing and debugging process and the results of our
radar systems. As the testing results show, we are able to get
clear and good signals as well as on-board signal processing.

MARCH 2018 TEAM: KOBE 3

Fig. 8. RF layout.

Fig. 9. Assembled PCBs

The largest distance we were able to achieve our system and
the target was about 90 meters using the Teensy to generate
the signals. Building a radar system during the two quarters
includes the following concerns: budget control, component
selection, PCB design and assembly, system testing, proper
micro-controller programming, and a lot of teamwork.

ACKNOWLEDGMENT

The authors would like to thank Prof. Xiaoguang Liu,
Songjie Bi, Mahmoud Nafe and Hind Reggad, for their in-
struction and guidance.

Fig. 10. A Yagi antenna from Kent Electronics at wa5vjb.com

Fig. 11. Results of using coffee can antennas tested at Kemper

Fig. 12. Results of using Yagi antennas tested at Kemper

MARCH 2018 TEAM: KOBE 4

Fig. 13. Testing setup on the Hutchison field.

Fig. 14. On board testing using raspberry pi

Fig. 15. On board testing using raspberry pi

Fig. 16. Testing results of the radar system using Yagi antennas

MARCH 2018 TEAM: KOBE 5

Fig. 17. Testing results of the radar system using coffee can

Fig. 18. Maximum distance of the testing results of the radar system using
Yagi antennas

MARCH 2018 TEAM: KOBE 6

APPENDIX

-*- coding: utf-8 -*- range radar, reading files from a WAV
file Originially modified by Meng Wei, a summer exchange
student (UCD GREAT Program, 2014) from Zhejiang Uni-
versity, China, from Greg Charvat’s matlab code Nov. 17th,
2015, modified by Xiaoguang ”Leo” Liu, lxgliu@ucdavis.edu

import wave import os from struct import unpack im-
port numpy as np from numpy.fft import ifft import mat-
plotlib.pyplot as plt from math import log

constants c= 3E8 (m/s) speed of light Tp = 20E-3 (s) pulse
duration T/2, single frequency sweep period. fstart = 2350E6
(Hz) LFM start frequency fstop = 2470E6 (Hz) LFM stop fre-
quency BW = fstop-fstart (Hz) transmit bandwidth trnctime =
0numberofsecondstodiscardatthebeginingofthewavfile

window = False whether to apply a Hammng window.
for debugging purposes log

file logfile = ’lognew.txt
′logfh =

open(logfile,′ w′)logfh.write(′start′)
read the raw data .wave file here get path to the .wav file

filename = os.getcwd() + ’runningoutside20ms.wav’ filename
= os.getcwd() + ’/test.wav’ The initial 1/6 of the above
wav file. To save time in developing the code open .wav file
wavefile = wave.open (filename, ”rb”)

number of channels nchannels = wavefile.getnchannels()
number of bits per sample samplewidth =

wavefile.getsampwidth()
sampling rate Fs = wavefile.getframerate() trncsmp =

int(trnctime*Fs) number of samples to discard at the begining
of the wav file

number of samples per pulse N = int(Tp*Fs) number of
samples per pulse

number of frames (total samples) numframes = wave-
file.getnframes()

trig stores the sampled SYNC signal in the .wav file trig
= np.zeros([rows,N]) trig = np.zeros([numframes - trncsmp])
s stores the sampled radar return signal in the .wav file s =
np.zeros([rows,N]) s = np.zeros([numframes - trncsmp]) v
stores ifft(s) v = np.zeros([rows,N]) v = np.zeros([numframes
- trncsmp])

read data from wav file
data = wavefile.readframes(numframes)
for j in range(trncsmp,numframes): get the left (SYNC)

channe left = data[4*j:4*j+2] get the right (Data) channel right
= data[4*j+2:4*j+4] .wav file store the sound level information
in signed 16-bit integers stored in little-endian format The
”struct” module provides functions to convert such information
to python native formats, in this case, integers.

if len(left) == 2: l = unpack(’h’, left)[0] if len(right) ==
2: r = unpack(’h’, right)[0] normalize the value to 1 and
store them in a two dimensional array ”s” trig[j-trncsmp] =
l/32768.0s[j − trncsmp] = r/32768.0

trigger at the rising edge of the SYNC signal trig[trig ¡ 0]
= 0; trig[trig ¿ 0] = 1;

2D array for coherent processing s2 =
np.zeros([int(len(s)/N),N])

rows = 0; for j in range(10, len(trig)): if trig[j] == 1 and
np.mean(trig[j-10:j]) == 0: if j+N ¡= len(trig): s2[rows,:] =
s[j:j+N] rows += 1

s2 = s2[0:rows,:]
pulse-to-pulse averaging to eliminate system performance

drift overtime for i in range(N): s2[:,i] = s2[:,i] -
np.mean(s2[:,i])

2pulse cancelation
s3 = s2 for i in range(0, rows-1): s3[i,:] = s2[i+1,:] - s2[i,:]
rows = rows-1 s3 = s3[0:rows,:]
apply a Hamming window to reduce fft sidelobes if win-

dow=True if window == True:
for i in range(rows):
s3[i]=np.multiply(s3[i],np.hamming(N))
Range-Time-Intensity (RTI) plot inverse FFT. By default

the ifft operates on the row v = ifft(s3)
get magnitude v = 20*np.log10(np.absolute(v)+1e-12)
only the first half in each row contains unique information

v = v[:,0:int(N/2)]
normalized with respect to its maximum value so that

maximum is 0dB m=np.max(v) grid = v grid=[[x-m for x in
y] for y in v]

maximum range maxrange =c*Fs*Tp/4/BW maximum time
maxtime = Tp ∗ rows

plt.figure(0) plt.imshow(grid,
extent=[0,maxrange, 0,maxtime], aspect =′ auto′, cmap =
plt.getcmap(′gray′))plt.imshow(grid, extent =
[0,maxrange, 0,maxtime], aspect =′

auto′)plt.colorbar()plt.clim(0,−100)plt.xlabel(′Range[m]′, ′fontsize′ : 20)plt.ylabel(′time[s]′, ′fontsize′ : 20)plt.title(′RTIwith2−
pulseclutterrejection′, ′fontsize′ : 20)plt.tightlayout()plt.show()

plt.subplot(612) plt.plot(grid[5])
plt.subplot(613) plt.plot(grid[6])
plt.subplot(614) plt.plot(grid[20]) plt.subplot(615)

plt.plot(grid[30])
plt.subplot(616) plt.plot(grid[40])

MARCH 2018 TEAM: KOBE 7

!/usr/bin/python
#-------------------------------------
--
Name: MCP4911_sawtooth.py
Purpose: Output a sawtooth waveform
#
Author: paulv
#
Created: 18-09-2015
Copyright: (c) paulv 2015
Licence: <your licence>
#---

import spidev
from time import sleep

DEBUG = False
spi_max_speed = 4 * 100000 # 4 MHz
V_Ref = 2500 # 3V3 in mV
Resolution = 2**12 # 10 bits for the MCP 4911
CE = 0 # CE0 or CE1, select SPI device on bus

setup and open an SPI channel
spi = spidev.SpiDev()
spi.open(0,CE)
spi.max_speed_hz = spi_max_speed

def setOutput(val):
lowbyte has 8 data bits
B7, B6, B5, B4, B3, B2, B1, B0
D7, D6, D5, D4, D3, D2, D1, D0
lowByte = val & 0b11111111
highbyte has control and 4 data bits
control bits are:
B7, B6, B5, B4, B3, B2, B1, B0
W ,BUF, !GA, !SHDN, D9, D8, D7, D6
B7=0:write to DAC, B6=0:unbuffered,
B5=1:Gain=1X, B4=1:Output is active
highByte = ((val >> 6) & 0xff)
| 0b0 << 7 |
0b0 << 6 | 0b1 << 5 | 0b1 << 4
#
by using spi.xfer2(), the CS
is released after
each block, transferring the
value to the output pin.
if DEBUG :
print("Highbyte = {0:8b}".
format(highByte))
print("Lowbyte = {0:8b}".
format(lowByte))
spi.xfer2([highByte, lowByte])

try:
while(True):

create a sawtooth ramp starting from 0 to V-ref in 1024 steps
for step in range(1024):
if DEBUG :
print("Step = {0}".format(step))
print("Output level should be :
{0} mV".format(step * V_Ref / Resolution))
setOutput(step)
for step in range(1024,0,-1):
if DEBUG :
print("Step = {0}".format(step))
print("Output level should be :
{0} mV".format(step * V_Ref / Resolution))
setOutput(step)

except (KeyboardInterrupt, Exception) as e:
print(e)
print("Closing SPI channel")
spi.close()

def main():
pass

if __name__ == ’__main__’:
main()

%MIT IAP Radar Course 20112.5
%Resource: Build a Small Radar System
Capable of Sensing Range, Doppler,
%and Synthetic Aperture Radar Imaging
%
%Gregory L. Charvat

%Process Range vs. Time Intensity (RTI) plot

clear all;
close all;

% read the raw data .wav file here
% replace with your own .wav file
[Y,FS,NBITS] = wavread(’testtest5.wav’);

%constants
c = 3E8; %(m/s) speed of light

%radar parameters
Tp = 20E-3; %(s) pulse time
N = Tp*FS; %# of samples per pulse
fstart = 2325E6; %(Hz) LFM start frequency
fstop = 2427E6; %(Hz) LFM stop frequency
BW = fstop-fstart; %(Hz) transmti bandwidth
f = linspace(fstart, fstop, N/2);
%instantaneous
transmit frequency

%range resolution
rr = c/(2*BW);
max_range = rr*N/2;

MARCH 2018 TEAM: KOBE 8

%the input appears to be inverted
trig = -1*Y(:,1);
s = -1*Y(:,2);
clear Y;

%parse the data here by triggering off rising edge of sync pulse
count = 0;
thresh = 0;
start = (trig > thresh);
for ii = 100:(size(start,1)-N)
if start(ii) == 1 & mean(start(ii-11:ii-1)) == 0
%start2(ii) = 1;
count = count + 1;
sif(count,:) = s(ii:ii+N-1);
time(count) = ii*1/FS;
end
end
%check to see if triggering works
% plot(trig,’.b’);
% hold on;si
% plot(start2,’.r’);
% hold off;
% grid on;

%subtract the average
ave = mean(sif,1);
for ii = 1:size(sif,1);

sif(ii,:) = sif(ii,:) - ave;
end

zpad = 8*N/2;

%RTI plot
figure(10);
v = dbv(ifft(sif,zpad,2));
S = v(:,1:size(v,2)/2);
m = max(max(v));
imagesc(linspace(0,max_range,zpad),time,S-m,[-80, 0]);
colorbar;
ylabel(’time (s)’);
xlabel(’range (m)’);
title(’RTI without clutter rejection’);

%2 pulse cancelor RTI plot
figure(20);
sif2 = sif(2:size(sif,1),:)-sif(1:size(sif,1)-1,:);
v = ifft(sif2,zpad,2);
S=v;
R = linspace(0,max_range,zpad);
for ii = 1:size(S,1)

%S(ii,:) = S(ii,:).*R.ˆ(3/2); %Optional: magnitude scale to range
end
S = dbv(S(:,1:size(v,2)/2));
m = max(max(S));
imagesc(R,time,S-m,[-80, 0]);
colorbar;
ylabel(’time (s)’);
xlabel(’range (m)’);

title(’RTI with 2-pulse cancelor clutter
rejection’);

