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Abstract 
In fall quarter,  a 2.4GHz Frequency Modulated Continuous Wave (FMCW) radar system 

was built using breadboard and given RF components to perform range and Doppler 
measurements. To improved the accuracy, and minimize power consumption and overall weight, 
we implemented the major part of the system with PCBs and lightweight antenna. 
 
Overall Design  
             ​In the winter quarter, we would design a new radar system that based on the principles 
provided last quarter and focus on improving the accuracy and simplicity of our system. We 
choose accuracy as our top priority during the design and simplicity to be the second. We chose 
the most specific components through multiple choices for our system based on accurate 
calculation to insure it has satisfied accuracy, weight and power consumption. As the back up 
plan, we kept our quarter one system just in case any emergent malfunction of our design. We 
started with the calculation of power consumption of each component and came up with 
following block diagram. 

 
Fig 1. Block Diagram 

 
After we finalized our design and placed our order, we were told that the VCO ROS-2536C-1194 
was not available and we have done designing our RF PCB, so the only alternative was 
ROS-2490+. However, ROS 2490+ requires a tuning voltage of 5.5 V to have a 2.4 GHz 
frequency and the max output of the teensy triangle wave is 5 V. In order to raise the tuning 
voltage, we designed a voltage divider and connected it between the Teensy output and the VCO 
input, so we finally were able to get the teensy triangle wave from 1.8V to 6.7V, which covers 
the tuning range of the VCO for 2.4 GHz.  
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Fig 2. Voltage Divider 

 
 
Table 1. Component List 

 Components Model# 

VCO ROS-2490+ 

Power Amplifier MMG20241HT1CT-ND 

Low Noise Amplifier MGA-13316 

Splitter Mini SP-2U1+ 

Mixer MCA1-42LH+ 

Attenuator HMC653LP2E 

 Antenna 2.4GHz Yagi PCB antenna 

Gain Stage and Low Pass Filter OPA227PA-ND/OPA2227PA-ND 

 
Table 1 shows the key components we chose based on the power calculation in the block 
diagram. Other electronic components like resistors, conductors and inductors for our RF and 
baseband PCB. We purchased three for each component just in case any burning or malfunction 
during the soldering. The budget is also controlled under $300. All the components we bought 
are SMD components that would be soldered on our PCBs in order to reduce the weight of the 
whole system.  
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PCB Design 
After finishing the system block diagram and selecting the components, we began the 

PCB design on KiCad. We took a look at some designs of groups from previous terms, and we 
were inspired by Team RadioFreqs from year 2016-2017. Our system consists of two PCBs: 
baseband and RF. We use pin headers to stack two boards together for mechanical support. In 
design process, we carefully align the position of each pin-header connector by utilizing the 
“grid” in KiCad to make sure the successful stacking. Schematics and layouts of the baseband 
and the RF are shown below. 
 

      
Fig.3 Baseband schematic 
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Fig.4 RF schematic 

            
Fig.5 Baseband layout 
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Fig.6 RF layout 

 
Fig.7 stacked-up system (front view) 
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Fig.8 stacked-up system (side view) 

 
Design Testing 

After soldering both Baseband and RF PCBs, we first performed various tests to ensure 
that each individual PCB is working as expected. Then, we assembly the whole system to do 
further testing.  
 
Baseband PCB 

1. Connect teensy to the computer using a USB cable, and program it with the triangle wave 
code. Check the waveform at the output of the DAC (which is MCP4921 in our case). 

 
         Fig.9 Output of Function Generator 
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2. Input a signal to the LPF using a function generation, and observed the output of the gain 
stage. Adjust the potentiometer until it meet the deserved gain. Also, we test the cutoff 
frequency of the LPF, which is about 20kHz.  

             
      Figure 10. Output of the gain stage 

 
RF PCB 

1. Check the transmitting side of the RF board. According to our design, we expect to see a 
16.25dBm signal at the transmitting antenna. We observe a 14.7dBm signal, and believe 
this is pretty good because there are some reading error in the spectrum analyzer. 

   
Fig. 11 Transmitting power at start frequency 
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2. Check the Receiving side of the of RF board.  
● After confirming that the transmitting side has enough power to power the mixer, we then 

use a probe make sure there is signal going into the mixer.  
● Compare the signal coming in and out of the LNA, to ensure the LNA is working 

properly.  
● Finally, check the signal at the mixer output. However, there is no signal except some 

noise in our system. So, we come to conclusion that our mixer is not working. To fix this 
error, we replace the mixer with another new mixer (same model). However, we 
encounter the same issue again, with no signal coming out of the mixer. We believe the 
mixers have defects.  

 
 
Overall System Testing  

When we found out that the mixer is not working, there was no time for us to order a new 
mixer and redesign our PCB. Therefore, we decided to continue use the transmitting side of the 
RF PCB, but on the receiving side, we used the system from Quarter one.  
 

 
Fig.12 Assembled system 
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We tried different combination of attenuate, such as using both coffee can for transmitting and 
receiving, using both yagi antennas, and using one coffee can and one yagi. We found that using 
the coffee can for transmitting signal and yagi antenna for receiving signal give the us the most 
clear result and furthest measurement range. According to our design when the object is 50 meter 
away if we want the output signal to be 1 V, which will give us the clearest resolution, we need 
to amplified our signal with a gain of 1000, which means we need to adjust our pot to about 
200K ohms. However, during our testing, we found that a 20K ohm (gain of 200) is sufficient for 
50 meter range measurement.  
 
First Field Test: 

 
In the figure below, we can tell that the range goes up to about 70m, but we believe if we 

go further the system will still be able to detect it. However, due to the fact that the test 
environment didn’t allow us to go further so we didn’t continue testing.  

 
Fig.13 First filed test result 
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Result  
On Completion Day 
 
 

 
Fig.14 Competition trial 1 
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Fig.15 Competition Trial 2 

 
The whole system weighs 600g and the power consumption is 1.92W. It was raining during the 
first trial and we believed that the rain caused a lot of noise and made our result very ambiguous. 
We waited until the rain stopped and did the second trial and we got a perfect diagram that 
clearly showed the 5 stops made during the test. However, all the five results we reported were 2 
meters smaller than the actual value. We thought the problem was that we did not test the 
precision of our system and calibrate out the constant error.  
 
Conclusion  
 
This is a practical and comprehensive project that involves designing, debugging, and dealing 
with unpredictable real-life challenges. From the out-of-stock VCO to the defect mixer, we 
experienced many possible challenges we may face in actual production. Fortunately, we 
successfully solved these problems and had a fully worked radar system. However, the 
competition result could be better if we tested the precision of our radar system and calibrate out 
its inherent error. Moreover, the radar system could be more functional if we had on-board 
processing to see the real-time displacement.  
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Appendix A: Teensy Code 
 
/* 
 
Triangle wave and sync pulse generator to control a (0-5V 
input range) VCO for FMCW radar. 
 
The MPC4921 DAC is used to generate a triangle wave with 
a period of 40ms. 
 
PWM of the Arduino UNO is use to simultaneously generate 
the sync pulse, 
 
used for signal processing. 
 
*/ 
 
#include <SPI.h> // Include the SPI library  
 
word outputValue = 4;// A word is a 16-bit number 
 
int incr = 1; 
 
const int slaveSelectPin = 10; //set the slave select (chip 
select) pin number 
 
const int SYNC = 8;  //set the SYNC output pin number 
 
  
 
void setup() 
 
{ 
 
    // Set pins for output 
 
    pinMode(SYNC, OUTPUT);                     // SYNC pin 
 
    digitalWrite(SYNC, LOW);               // Sync pulse low 
 
    pinMode(slaveSelectPin, OUTPUT);                    // 
Slave-select (SS) pin 
 
    SPI.begin();                            // Activate the SPI bus 
 
    SPI.beginTransaction(SPISettings(16000000, MSBFIRST, 
SPI_MODE0));  // Set up the SPI transaction; this is not very 
elegant as there is never a close transaction action. 
 
} 
 

void loop() 
 
{ 
 
    if (outputValue == 4092 || outputValue == 0){ 
 
      incr = -incr; 
 
      digitalWrite(SYNC, !digitalRead(SYNC)); 
 
    } 
 
  
 
    outputValue = outputValue + incr; 
 
    byte HighByte =highByte(outputValue);    // Take the 
upper byte 
 
    HighByte = 0b00001111 & HighByte;       // Shift in the four 
upper bits (12 bit total) 
 
    HighByte = 0b00010000 | HighByte;       // Keep the Gain 
at 1 and the Shutdown(active low) pin off 
 
    byte LowByte = lowByte(outputValue);     // Shift in the 8 
lower bits 
 
  
 
    digitalWrite(slaveSelectPin, LOW);  
 
    SPI.transfer(HighByte);            // Send the upper byte 
 
    SPI.transfer(LowByte);             // Send the lower byte 
 
    digitalWrite(slaveSelectPin, HIGH);         // Turn off the SPI 
transmission 
 
} 
 
 

Appendix B: Python Code 
 
 

# 
-*- 
cod
ing: 
utf-
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8 
-*- 
 #range radar, reading files from a WAV file 

 # Originially modified by Meng Wei, a summer 
exchange student (UCD GREAT Program, 
2014) from Zhejiang University, China, from 
Greg Charvat's matlab code 

 # Nov. 17th, 2015, modified by Xiaoguang 
"Leo" Liu, lxgliu@ucdavis.edu 

  
 

 import wave 

 import os 

 from struct import unpack 

 import numpy as np 

 from numpy.fft import ifft 

 import matplotlib.pyplot as plt 

 from math import log 

  
 

 #constants 

 c= 3E8 #(m/s) speed of light 

 Tp = 19E-3  #(s) pulse duration T/2, single 
frequency sweep period of our system. 

 fstart = 2273E6 #(Hz) LFM start frequency of 
our system 

 fstop = 2438E6 #(Hz) LFM stop frequency of 
our system 
#Remember to change the Tp, fstart, and fstop 
value according to your system.  
 

 BW = fstop-fstart #(Hz) transmit bandwidth 

 trnc_time = 0 #number of seconds to discard at 
the begining of the wav file 

  
 

  
 

 window = False  #whether to apply a Hammng 
window. 

  
 

 # for debugging purposes 

 # log file 

 #logfile = 'log_new.txt' 

 #logfh = open(logfile,'w') 

 #logfh.write('start \n') 

  
 

 #read the raw data .wave file here 

 #get path to the .wav file 

 #filename = os.getcwd() + 
'\\running_outside_20ms.wav' 

 filename = os.getcwd() + '\\range_test2.wav' 
# The initial 1/6 of the above wav file. To save 
time in developing the code 

 #open .wav file 

 wavefile = wave.open(filename, "rb") 

  
 

 # number of channels 

 nchannels = wavefile.getnchannels() 

  
 

 # number of bits per sample 

 sample_width = wavefile.getsampwidth() 

  
 

 # sampling rate 

 Fs = wavefile.getframerate() 

 trnc_smp = int(trnc_time*Fs) # number of 
samples to discard at the begining of the wav 
file 

  
 

 # number of samples per pulse 

 N = int(Tp*Fs)  # number of samples per pulse 

  
 

 # number of frames (total samples) 

 numframes = wavefile.getnframes() 

  
 

 # trig stores the sampled SYNC signal in the 
.wav file 

 #trig = np.zeros([rows,N]) 

 trig = np.zeros([numframes - trnc_smp]) 

 # s stores the sampled radar return signal in 
the .wav file 

 #s = np.zeros([rows,N]) 

 s = np.zeros([numframes - trnc_smp]) 

 # v stores ifft(s) 

 #v = np.zeros([rows,N]) 

 v = np.zeros([numframes - trnc_smp]) 

  
 

 #read data from wav file 

  
 

 data = wavefile.readframes(numframes) 

  
 

 for j in range(trnc_smp,numframes): 

    # get the left (SYNC) channel 

    left = data[4*j:4*j+2] 

    # get the right (Data) channel 

    right = data[4*j+2:4*j+4] 
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    #.wav file store the sound level information in 
signed 16-bit integers stored in little-endian 
format 

    #The "struct" module provides functions to 
convert such information to python native 
formats, in this case, integers. 

   

    if len(left) == 2: 

        l = unpack('h', left)[0] 

    if len(right) == 2: 

   r = unpack('h', right)[0] 

        #normalize the value to 1 and store them 
in a two dimensional array "s" 

    trig[j-trnc_smp] = l/32768.0 

    s[j-trnc_smp] = r/32768.0 

   

 #trigger at the rising edge of the SYNC signal 

 trig[trig < 0] = 0; 

 trig[trig > 0] = 1; 

  
 

 #2D array for coherent processing 

 s2 = np.zeros([int(len(s)/N),N]) 

  
 

 rows = 0; 

 for j in range(10, len(trig)): 

    if trig[j] == 1 and np.mean(trig[j-10:j]) == 0: 

        if j+N <= len(trig): 

            s2[rows,:] = s[j:j+N] 

            rows += 1 

  
 

 s2 = s2[0:rows,:] 

  
 

 #pulse-to-pulse averaging to eliminate system 
performance drift overtime 

 for i in range(N): 

    s2[:,i] = s2[:,i] - np.mean(s2[:,i]) 

  
 

 #2pulse cancelation 

  
 

 s3 = s2 

 for i in range(0, rows-1): 

    s3[i,:] = s2[i+1,:] - s2[i,:] 

   

 rows = rows-1 

 s3 = s3[0:rows,:] 

   

 #apply a Hamming window to reduce fft 
sidelobes if window=True 

 if window == True: 

    for i in range(rows): 

        s3[i]=np.multiply(s3[i],np.hamming(N)) 

  
 

 ##################################### 

 # Range-Time-Intensity (RTI) plot 

 # inverse FFT. By default the ifft operates on 
the row 

 v = ifft(s3) 

  
 

 #get magnitude 

 v = 20*np.log10(np.absolute(v)+1e-12) 

  
 

 #only the first half in each row contains unique 
information 

 v = v[:,0:int(N/2)] 

  
 

 #normalized with respect to its maximum value 
so that maximum is 0dB 

 m=np.max(v) 

 grid = v 

 grid=[[x-m for x in y] for y in v] 

  
 

 # maximum range 

 max_range =c*Fs*Tp/4/BW 

 # maximum time 

 max_time = Tp*rows 

  
 

 plt.figure(0) 

 #plt.imshow(grid, 
extent=[0,max_range,0,max_time],aspect='auto
', cmap =plt.get_cmap('gray')) 

 plt.imshow(grid, 
extent=[0,max_range,0,max_time], 
aspect='auto') 

 plt.colorbar() 

 plt.clim(0,-100) 

 plt.xlabel('Range[m]',{'fontsize':20}) 

 plt.ylabel('time [s]',{'fontsize':20}) 

 plt.title('RTI with 2-pulse clutter 
rejection',{'fontsize':20}) 

 plt.tight_layout() 

 plt.show() 



17 

  
 

 #plt.subplot(612) 

 #plt.plot(grid[5]) 

  
 

 #plt.subplot(613) 

 #plt.plot(grid[6]) 

  
 

 #plt.subplot(614) 

 #plt.plot(grid[20]) 

 # 

 #plt.subplot(615) 

 #plt.plot(grid[30]) 

  
 

 #plt.subplot(616) 

 #plt.plot(grid[40]) 

 

 


