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Design 
 
The main idea behind our design was to make the parts as modular as possible. By keeping the different 
systems separated we thought it would make debugging and problem solving easier to accomplish. We 
separated our radar into the following subsystems: function generator, radio frequency circuit (RF), baseband, 
and digital signal processing (DSP). Each of these subsystems was self contained, either on a PCB or 
breadboard.  
 
Below is the overall block diagram for the entire radar system. Included in this diagram are the calculated 
power ratings for each component, along with relevant linearity ratings. This should show that all components 
are operating well within their optimal linear regions.  
 

 

 
Figure 1. Block diagram for entire radar system 

 
 

 
RF system 
The main objective when designing the RF PCB is was to keep the RF signal traces as straight as possible 
and as isolated as possible.  Because signal leakage was expected to be a problem, the signal generated by 
the VCO was designed to be as far away from the input signal as possible, which can be observed on the PCB 
when looking at the footprints for the SMA connectors.  
 
Because the traces are made to resemble a microstrip transmission line for frequencies between between 2.4 
and 2.5 GHz, but are not ideal, one must keep the traces short in order to avoid losses, but they were also 
made long enough to allow for easy soldering and desoldering of the components. 
 



When designing the RF PCB, one must not cross the waveguide traces for this would add noise to the signal. 
This restriction became an issue when providing the 5V Vcc bias to the LO Amp that runs from the splitter of 
the VCO signal to the mixer, for there was no possible way of providing the needed bias without crossing the 
waveguide traces. This issue was resolved by using a header pin that would provide needed bias through a 
wire over the waveguide trace and the PCB itself.  
 
One can also observe from the design of the PCB that in order to keep the number of loose wires to a 
minimum and to easily transfer the IF signal from the mixer to the baseband, a 3.5mm female audio jack was 
added as the output of the RF Band.  
 
A final note on the PCB is that it follows the design shown on the block diagram for the radar system and using 
the tool available we were able to verify the power on before and after each component; however one must 
note that due to the inaccuracy of the crude probe made to measure the power at each point, the power was 
not the same as that indicated on the block diagram, since the probe introduced large losses. Each component 
was verified to be working by measuring the power before and after each component, which allowed one to 
identify problems such as bad soldered joints. An example of this behavior was when debugging the power out 
of the transmitter. Using the probe to measure the power after the power amplifier, one was able to read a 
power of approximately 1dBm. This was about 15dBm lower than expected, however, measuring the power 
before the amplifier one read a power of about -14dBm, which meant that the amplifier was amplifying about 
15 dBm, which was very close to the 16dBm that the amplifier was intended to amplify.  
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Figure 2. RF pcb 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
Figure 2a. Schematic for RF pcb 

 
 

Function Generator/Power Junction 
In an attempt to save power and weight on our system, we decided to use an IC as a function generator. The 
chip we chose was the Exar XR 2206 (datasheet). This IC is capable of outputting triangle or sine wave as well 
as a square wave of varying amplitudes and frequencies by simply adjusting the biasing points. Our design 
required the Vtune going into the VCO to be a triangle wave running between 0 and 2.5 volts at a frequency of 
25 Hz. In order to achieve this waveform, we had to use negative voltages. The schematic below is from the 
datasheet for this IC. We followed this very closely, with the only exception being that all of the ground symbols 
were replaced with a -2.5 V bias. 
 
Throughout the entire radar system there was a need for four different voltages (+/- 5 V and +/- 2.5 V). There 
were four different systems that were separated out into different boards, all with their individual power needs. 
In order to make the wiring easier we decided to include all of the power implementation into the pcb that also 
housed the function generator. The +5 V was needed for all four systems. Initially we chose a low pass filter for 
the baseband system that needed a -5V bias, however that component was eventually replaced with a filter 
that only needed +5V. The power pcb had already been sent to manufacture by that point, so it was too late to 
erase that part of the design. The +2.5 V reference point was needed for both the baseband circuit and the 
DSP. In addition to the voltage biasing outputs, the function generator outputs also needed to be sent out of 
the board. The triangle wave output needed to go to the RF board, and the square wave to the DSP.  Each of 
the voltages needed would be regulated using a linear voltage regulator (-5 V, -2.5 V, +5V), with the exception 
of the +2.5 voltage, which utilized a reference voltage IC. The idea is that all the power needed for the radar 
system would come into the board, and then using locking test points as outputs should be easy to run the 

http://www.ti.com/lit/ds/symlink/lm317-n.pdf
http://www.ti.com/lit/ds/symlink/lm337l.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/REF01_02_03.pdf
http://www.jameco.com/Jameco/Products/ProdDS/34972.pdf


different bias points needed for other boards. Included below are the schematic and pcb design (copper fills 
are not pictured for clarity sake, but ground planes were added on top and bottom). 
 

 
Figure 3. Schematic for function generator using XR 2206 

 

 
Figure 4. Schematic for function generator/power junction pcb 



 
Figure 5. Pcb design for function generator/power junction 

 
Baseband 
For amplification, you may choose whichever topology to achieve the necessary amount of gain. We will 
examine the common non-inverting amplifier topology for simplicity sake. 
 

  
 Figure 6. Non-inverting Amplifier Schematic  

 
  From figure 6, the gain of the amplifier is determined by R2 and R3. It would be a good idea that R3 be 
switched with a potentiometer to have an easily adjustable gain. Examining the schematic, the role of C1 is to 
DC couple the input signal so as to eliminate any DC components from the signal. The +2.5 Volt reference in 
conjunction with the +5 Volt supply rail merely sets the maximum output swing if only a +5 Volt source is used 



to power the amplifier. This can be modified depending on the user’s intended application. From our 
experience, it may be a good idea to cascade another non-inverting amplifier to add versatility to the gain 
stage. You may need to increase the gain substantially than what was calculated from the link budget analysis 
in order to obtain a desirable signal for DSP. However, since amplifying the signal also amplifies the noise, it is 
important to find a good balance between the two, which is easily achieved with potentiometers as the gain 
controller.  
 
Like the baseband amplifiers, there are numerous ways to implement a low pass filter. One of the easiest 
method is to use an IC from companies such as Analog Devices or MAXIM Integrated. We used MAX7408 
(datasheet) since the typical operating circuit was easy to build. The MAX7408 provides a stopband rejection 
of approximately 53 dB with cutoff frequencies between 1 Hz to 15 KHz. 
 

 
 Figure 7. Typical Operating Circuit for MAX7408 

 
Since an external clock cannot be utilized, the MAX7408 can be internally clocked by shorting the CLK pin to 
GND with a capacitor value to yield the desired cutoff frequency.  The relationship between the cutoff 
frequency and oscillation frequency of the internal clock can be expressed as: 
 
  
 
 
 
 
The necessary clock frequency can directly be calculated by the cutoff frequency. With these parameters, the 
expression to determine the capacitor value is given as 
 
 
 
 
 
 
In principle, the cutoff frequency of the low-pass filter should be as low as possible so that unwanted 
components from the amplified signal and background noise will be filtered out. The cutoff should be high 
enough to just cover the bandwidth of the signal. 
 

http://datasheets.maximintegrated.com/en/ds/MAX7408-MAX7415.pdf
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Digital Signal Processing 
The signal processing design was fairly simplistic and consisted of an ADC, a microcontroller, a small display, 
and a few tactile switches that acted as an input to switch through menus and move a cursor. This design 
ended using a low amount of power, only drawing about 50-60mA at 5V. Unfortunately there wasn’t enough 
time to create a fully functioning system that could output the results in realtime, but the display output a 
frequency spectrum of the system every second (or half second). This data needed further processing to 
create a meaningful output and the design plan was to create a similar display to the Python/Matlab code that 
was used in its stead, but in one second intervals or quicker. While time was the main obstacle, there was also 
some issues arising from a lack of RAM. Memory issues, however, could have been eliminated with some 
proper code optimization.  
 
This design used the ADS8321 16-bit ADC, which had an SPI interface with the timing diagram shown below. 
Due to the strange timing, bit-banging was used rather than a dedicated hardware SPI channel. This meant 
that the timing was created by manually toggling the pins in the code instead of sending the data to a queue 
register on the microcontroller. The results are often slower, but more control over the data flow is offered.  

 
Figure 8. ADS8321 Basic Timing Diagram 

 
The ADS8321 was implemented using the suggested schematic within the datasheet (Figure 9), with the 
reference of the ADC, which sets the max readable voltage level, set to around 1.25V rather than 2.5V. 
 

http://www.ti.com/lit/ds/symlink/ads8321.pdf
https://en.wikipedia.org/wiki/Bit_banging


 
Figure 9: ADS8321 Example Schematic 

 
 
The original microcontroller used was the Raspberry Pi Zero, which runs a Linux operating system by default. 
The Raspberry Pi has an FFT library that uses the onboard GPU to quickly process large amounts of data 
within a few hundred microseconds. This coupled with the high speed of the Raspberry Pi made it a very 
tempting choice for this application, but it was eventually eliminated due to the unnecessary difficulty that the 
Linux operating system imposed on the data acquisition process. Because Linux is not a “real-time” operating 
system, several interrupts that keep the OS flowing smoothly disrupt the read timing of the ADC. This means 
that a consistent sampling rate can be difficult to achieve. Perhaps the more important reason that the 
Raspberry Pi Zero was abandoned was the difficulty of easily coding and running the program. There is only 
one available micro-USB port, which means a powered USB hub is required to connect the Pi to the network 
and use a keyboard. Although there are other methods for logging into the Pi such as serial connections and 
network SSH terminals, they all created some difficulties including issues with shutting down the 
microcontroller correctly to prevent damage to the SD card. The Teensy 3.1 was eventually used, as it had 
plenty of power to process the data, but it’s memory capacity was a bit lacking. This wouldn’t have been an 
issue for the Teensy 3.6, but there wasn’t time to order a new microcontroller. The Teensy is fairly simplistic to 
program, since it uses the same IDE as an arduino and holds all of the same functionality with a few added 
features such as a faster clock speed.  
 
The display used was a 16-bit 128x128 OLED from https://www.adafruit.com/. A completely functioning library 
had been written for the Arduino that included printing text and a list of simple primitives, but the commands for 
interfacing with the display driver circuit directly can be found in the datasheet. 
 
 
 

https://www.adafruit.com/
https://www.adafruit.com/products/1431
https://www.pjrc.com/store/teensy36.html
https://www.pjrc.com/teensy/teensy31.html
https://cdn-shop.adafruit.com/datasheets/SSD1351-Revision+1.3.pdf
https://www.raspberrypi.org/blog/accelerating-fourier-transforms-using-the-gpu/
https://www.raspberrypi.org/products/pi-zero/
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Figure 10. DSP Schematic. Tactile switches with pull-down resistors were used as input devices.  

 
 

 
The code written for the teensy can be found here. It’s functional enough to get produce a fourier spectrum on 
the screen, but the data types can be optimized a little more intelligently and the code can be organized to be a 
little more clean.  
 
Unfortunately the matlab code used within the labs for the class was used to process the data in the end. The 
DSP was only a few steps away from working correctly though. 
 
 
Testing 
 
Since we took the modular approach for the system, it was simpler to test each board for functionality. 
 
 
Baseband 
The baseband was easily tested due to being built on a breadboard. A test signal was used as an input to the 
amplifier stage. We decided that in order to add versatility and improve gain, two non-inverting amplifiers were 
cascaded together. The needed gain to amplify a wave traveling a forward 60 meters was approximately 30. 
By adding a potentiometer as one of the gain control resistors to the non-inverting amplifier, we were able to 

https://github.com/Radionauts/Radar/blob/master/RadarCodeTeensy


see on the oscilloscope that the required gain was met. With the cascaded amplifiers, the maximum gain was 
approximately 900 or 60 dB. Next the low pass filter IC was tested using another external test signal. We 
decided that the cutoff frequency of the filter should be less than 10 KHz. This was easily achieved by shorting 
a desired capacitor value from CLK to GND. The amplifier stage and filtering stage was cascaded together and 
the observed signal on the oscilloscope showed that the test signal was amplified and filtered as desired.  
 

 
Figure 11. Gain characteristics for baseband system 

RF Board 
There was difficulty in testing the RF board since there was not a precise instrument to measure the RF signal 
due to impedance matching. One of the methods to testing the gain and frequency of each component was 
attaching the probe to a spectrum analyzer and probing the input and output pins to see whether the gain or 
frequency was consistent with the datasheet. A constant voltage was used for the tune voltage of the VCO. It 
was measured that at 0V and 2.5V, the frequency span of the VCO ranged from 2.4 GHz to 2.5 GHz, 
respectively. Next the power and low noise amplifiers were tested on and their gain was found to be close with 
the datasheet. To test whether the mixer was mixing properly, a test RF signal from the synthesizer was used 
to determine whether the signal, with a constant tune voltage, from the VCO was downconverted by the 
synthesizer signal; this method, showed that the mixer was working as intended.  
 
Entire System 
For a preliminary test of the entire radar system, the output signal going into the DSP was viewed with an 
oscilloscope. We wanted to see whether the signal was changing as a reflective surface was placed in front of 
the antennas. By adjusting the gain from the baseband, the final output signal could be modified for better 
DSP. From early field tests, we were not able to get satisfactory data with last quarter’s DSP. With the help of 
team Radio Freqs, we realized that signal processing using the code for MATLAB provided far better results 
than with the code for Python. In addition, at much farther distances from the antenna, the signal could be seen 
better as the gain from the baseband was increased substantially higher than what was calculated. For 
distances less than 20 meters, the signal could be seen better for lower gain. Several configurations for the 
antennas were tested. The two ALFA antennas as transmitter and receiver seemed to include undesirable 
crosstalk that interfered with the signal reflected by the metal surface. We found that one coffee can waveguide 
for the transmitter and one ALFA antenna as the receiver provided the best results. With this configuration and 
the baseband gain set to approximately 50 dB, the maximum range detected was close to 135 meters.  
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Figure 12. Final results from our best test run 

 

 
Figure 13. Top view of final implementation 

 



 
Figure 14. Side view of final implementation with antenna mounts 

 
Discussion 
 
Eventually we ended up replacing the function generator with the teensy and DAC system used from quarter 
one of this class. We were having problems with getting unreliable data from the DSP portion, and we thought 
that perhaps there may have been too much jitter in the triangle wave output from the function generator IC. 
Eventually we found that there was too little gain coming from our baseband amplifier, and that was the major 
problem we were having. At this point, though, we had run out of time to sufficiently test the difference between 
the teensy and the IC to see if there was a significant difference. The teensy had already been put in place so 
we decided to leave it there. Our suspicion is that the triangle wave would still have worked, and with a little 
more time that would be a place where we could save some significant power consumption. The teensy takes 
approximately 30 mA to run, with the XR 2206 only a few uA. 
 
There ended up being a lot of empty space in the circuitry portion of our system. This was an unfortunate by 
product of the modular approach that we took. While this approach was very useful for debugging, we 
unfortunately ran out of time to really cut down on the excess board space taken up. An example is with the 
baseband breadboard and the teensy pcb. We ended up modifying the baseband pcb from quarter one in 
order to make the new teensy function generator work. However there was still a lot of empty space left on the 
baseband circuit which was on a breadboard. To save space we could have combined these two. 
 
When it comes the PCB, we decided to maintain our first PCB, for it had initially worked without needing much 
work, but when one of our amplifiers burnt due to incorrect biasing, discovered that the PCB lacked an 
important feature; test points. As was discussed earlier, the probe used to measure power along the RF traces 
was unreliable to the point where it was impossible to determine what component or number of components 
were the ones that did not work. If a revision of the PCB had been made, we would have included test points in 
the RF lines that went after each component to the side of the board and would be terminated on footprints for 



SMA connectors. By doing this, one could simply solder a temporary SMA connector what could then be 
connected directly to the spectrum analyzer in order to obtain more precise readings of the power.  
 
The signal processing was nearly complete by the end of the project, but too much time was wasted using the 
Raspberry Pi. The code just needed to display a plot similar to the MATLAB code in Figure 12 in real time with 
a few techniques to reduce the background noise. A few simple clutter rejection techniques would be simple to 
add and the real time plot would not require much to code with a spectrum already being generated every 
second. There are also a few easy ways that the image could have been compressed to accommodate the 
lack of RAM on the Teensy 3.1.  
 


