

EEC 134 Project Report

RF/Microwave System Design

Fall - Winter 2016

Professor Liu

Team RF Eater

Qun Xia

Yueming Qiu

Tianyi Gao

Jiaming She

Abstract

This two quarters we work on a Frequency Modulated Continuous Wave (FMCW) radar

system, which can detect wide range of distant of an object. In this report, we will take about the

designing procedures and details.

Introduction

FMCW radar can be used to locate and detect objects, while Doppler radars can help to

determine the speed of an object. We mainly focused on the FMCW radar in our senior design

project. Our radar system include one transmitting antenna and one receiving antenna. Let the

transmitting antenna send out a signal. The signal will reach the object and be reflected back.

The receiving antenna will receive the signal that is reflected back. Then we can use laptop to

analyze the signal received in order to detect the distance between the radar and the object.

Designing Procedure

In fall quarter, we learned the knowledge needed for radar system design. Through each

instructed lab, we got a general idea of the function and characteristic of each RF component.

We also got familiar with PCB designing in fall quarter. Based on the experience from fall

quarter, we made the improvement plan at the beginning in winter quarter. Since all of our group

member have no background with embedding system, we decided to use laptop to do the

real-time signal processing but focus more on the accuracy of the measurement. In fall quarter,

unfortunately, the PCB our team designed and assembled in were all failed, so we decided to

focus more on improving the PCB from fall quarter instead of designing more new PCBs. We

divided the baseband circuit into three smaller PCB instead of a large one, which made the

debugging easier. We totally designed four PCBs for our radar system, one for each of the

following: function generator, voltage regulator and reference, active low-pass filter with gain

stage and low-noise amplifier. We also took off the attenuator. We planned to keep using metal

box for other RF components except the low-noise amplifier, which we believed will be more

stable and safe. Based on our plan, we made the quarter 2 schedule as shown in Fig 1.

● Timeline with Gantt Chart

Fig 1. Timeline

● Calculations

In fall quarter, we measured the gain of our can antenna and it is 7.348dB. Based on this

value and the following equation, we calculated the propagation loss for our system.

Distance Propagation loss

50m 96.2dB

25m 84.13dB

5m 56.17dB

1m 28.21dB
Table 1. Propagation Loss

● Block Diagram for our Radar System

We made the block diagram for our final radar system according to the calculations.

 Fig 2. Block Diagram for the Radar System

● PCB Design, Assembling and Testing

We totally designed four PCBs for our radar system, one for each of the following:

function generator, voltage regulator and reference, active low-pass filter with gain stage and

low-noise filter. When assembling the PCBs, we used the equipment from EFL lab in Bainer

Hall. Compared with the warm plate we used for heating our PCBs in fall quarter, the flow oven

in the EFL lab is more efficient and easy to use. We figured out that the PCBs from fall quarter

were all failed could be caused by that the heated temperature for the PCBs were not high

enough.

1. Voltage regulator and Reference

The first PCB we designed was the voltage regulator and reference. This PCB contained

two major components, LM317 and LT1009. LM317 worked as a voltage regulator. LT1009

with a 3.6K ohm resistor will work as precision voltage reference. The PCB is supposed to have

one output for 5V and one output for 2.5V when having a 8V power input.

 Fig 6. Schematic for Voltage Regulator and Reference

 Fig 6. PCB Layout for Voltage regulator and reference

Fig 7. Assembled Voltage Regulator and Reference PCB

In order to test the PCB, we connected the input of the PCB to a 8V power supply. Then

we used the multimeter to measure the voltage at the output for 5V. We adjust the potentiometer

until we got 5V. Then we measured voltage at the reference output pin. The voltage was 2.49V,

which suggested that the PCB for voltage regulator and reference PCB worked well. Then we

will use this PCB combined with the bench power supply working as a power supply for the rest

of the PCBs and circuits.

2. Function Generator

The second PCB we designed was the function generator, which include two major

components, teensy 3.1 and MCP4921. Teensy 3.1 is a microcontroller that will generate a

triangle wave and a square wave. MCP4921 is a Digital-to-Analog Converter (DAC) that can

convert the voltage value from teensy into frequency value that will go into voltage controlled

oscillator (VCO) later.

 Fig 3. Schematic for function generator

 Fig 4. PCB Layout for function generator

Fig 5. Assembled Function Generator

The function generator should generate a triangle wave with a 0.5-4.5V input range and

40ms period. We modified the code for teensy given in fall quarter to achieve the values we

want:

Fig 6. Teensy Code

For testing the function generator PCB, we uploaded the code in Fig 6 to teensy. Then we

connected the output of the PCB to oscilloscope. When powering up the teensy, we can see a

perfect triangle wave shown on oscilloscope. The minimum voltage was 0.5V and the maximum

voltage was 4.5V. The period was 38ms. These data suggested that our function generator PCB

worked correctly. We will use this PCB to generate the signal going into the transmitting side of

the radar system.

3. Active Low-Pass Filter + Gain Stage

The active low-pass filter (LPF) plus gain stage worked for filtering out spurious signals

and amplifying the desired received baseband radar signals.

 Fig 7. Schematic for LPF + Gain Stage

 Fig 8. PCB Layout for LPF + Gain Stage

Fig 9. Assembled LPF + Gain Stage PCB

In order to test the LPF + Gain Stage PCB, we connected the 5V and 2.5V power input

pins with the voltage regulator and reference PCB. Then we used the function generator in the

lab room to generate a 100 mVpp and 1k Hz signal and connect it to the input of the gain stage.

We used the oscilloscope to show the output signal of the filter. By adjusting the potentiometer,

we set the output peak to peak voltage of the PCB to be 3V and got the perfect sinusoidal wave

as shown in Figure 10. This plot suggested that our PCB worked properly.

Fig 10. Output Signal of LPF + Gain Stage PCB

4. Low-Noise Amplifier (LNA)

For the RF components in our system, we only designed a PCB for the low-noise

amplifier. We planned to use one LNA in the transmitting circuit and two LNAs in the receiving

circuit. Compared the radar system from fall quarter, we added one more LNA in the receiving

circuit. We believed that adding one more LNA could help with getting stronger signal for

analyzing. Thus, we assembled three LNA PCBs in our radar system.

 Fig 11 schematic for Amplifier

 Fig 12 PCB Layout for LNA

Fig 13 Assembled LNA PCB

In order to test the LNA PCBs, we performed the lab 2 from fall quarter again by

replacing the metal box circuit with PCB. According to our measurement, the gain of all three

PCBs are 12 dB, 19.2 dB and 12.2 dB respectively. The current going into the PCB was about

1.2A. However, the lab 2 manual from fall quarter said it was supposed to be 0.5A. We first

thought they all worked properly. However, in our future testing with whole radar system, we

found out that the LNA generated too much signal instead of generated just one. Thus, we gave

up using the PCBs we designed and used metal box circuits for our final design.

● Antenna

Considering the weight, size and the stability of the whole system, we decided not to use

coffee cans for both transmitting and receiving antennas from last quarter. We finally decided to

use can antenna only for the transmitting antenna because the gain for can antenna is bigger than

the patch antenna. Since patch antenna are more light and steady, we decided to use patch

antenna as the receiving antenna. By considering the operating situation we need, we purchased

the Yagi Antenna online as our patch antenna. The Yagi antenna is able to operate at 2.4GHz.

Due to the measurement with the spectrum analyzer, we calculated out the patch antenna

gain to be :

-29.5dBm = 0.00117 mW

G = (4π* 1/ 0.125) * √(0.00117 / 1) = 3.439 = 5.364dBi

With the help from the TA, we performed the coupling tests for the two antennas and decided

that the distance between two antennas should be 10 inches.

 Fig 14 Coupling test

According to the test for return loss (S11), the patch antenna and can antenna were

working with reasonable frequency. The bandwidth for the patch antenna is 0.6GHz, and the

bandwidth for the can antenna is 0.45GHz.

 Fig 15. S11 result for patch antenna

Fig 16. S11 result for can antenna

● Testing

During this quarter, we have made several testings. In general, there were three testing

phases for our project. Through all the testing procedures, we have modified our radar system for

several times. We also modified some major components and tried several different forms of the

components. We finalized our radar system in Phase 3.

1. Phase 1

Before we got our PCB back, we started the first testing phase with breadboard circuits

and metal box RF components. In the first phase of testing, we built a radar system that is similar

to the one we built in fall quarter. We modified the system a little bit. We rearranged the circuit

for baseband on one breadboard. We tried our best to keep the legs for resistors and capacitors

shorter and made each part of the circuit close enough to each other. The baseband circuit

became simpler and clearer. This also helped decrease the power loss in the circuit and make the

circuit more accurate. We also took off the attenuator and added one more LNA at the receiving

end. We replaced both can antennas with two patch antennas.

Fig 17. Phase 1 Radar System

We used the software Audacity in the computer in our lab room to test the whole system

as instructed in lab 6 from fall quarter. Then we used the python code given in fall quarter to

analyzed the audio data we collected.

Fig 18. Phase 1 test result

Fig 18 shows the plot generated by the python code. The plot was not clear enough to tell

the position of the objects. Since there were so many objects in the lab room, too much

reflections from those objects could be a possible reason that resulted the plot we got. It was also

possible that the signal that received by the receiving antenna was too weak. We made

modifications and improvements to our radar system in the second testing phase.

2. Phase 2

When we received our PCBs, we started built the radar system with our PCBs. We

replaced all the three LNAs with PCBs, but then a problem happend with the circuit. When we

turned on the power supply, the power supply showed that there was overload happening in the

circuit. But when we disconnected the LNAs from the circuit, there were no overloading

happening. We thought the LNA PCBs may have too much gain.

Fig 19. Phase 2 system with LNAs in PCB

Then we modified the system and replaced two of the LNAs with metal box circuits. The

overloading problem was solved. We also replaced the transmitting antenna with can antenna,

because we found out that the can antenna has more gain than the patch antenna due to our

measurement. We performed test again. We first tested inside the lab room and got the following

result.

Fig 20. In-room test audio file

Fig 21. Phase 2 system in-room test result

However, we found out that the resulting plot generated by the python code was still not

too clear. By taking a detailed look with the audio file, we discovered that the audio plot was

constant, which suggested that the radar system did not work properly. Suggested by TA and

Professor Liu, we decided to check the transmitting side and receiving side of our system

separately. We tested our PCBs again but found no problems. Then we performed the labs from

last quarter again to test each RF components but found no problems. Finally we decided to ask

one of the TAs, Daniel, for help. With the help from Daniel, we found out that there was some

problem with the PCBs we designed for low-noise amplifier. The LNA took in too much signal

instead only one desired signal. Thus, we had to use the metal box circuits for all the LNAs in

our radar system. This became the final version of our system.

3. Phase 3

In the third phase of testing, we finalized our radar system.

Fig 22. Final Radar System

We first tested the system in the lab room. We got a very clear plot this time. As shown

in the following plot, we could see a clear path shown one of our group member walking away

from the radar and then walked back.

Fig 23. Final Radar System In-room Testing Result

In the final test competition, we used this final radar system and got the following results for

each test.

Fig 24. Final Test 1

Fig 25. Final Test 2

Fig 26. Final Test 3

Fig 27. Final Test 4

Fig 28. Final Test 5

As shown in the all five figures above, our radar system can detect the metal plate as far as 50

meters. From all those five figures, we can clearly know that TA were walking from nearly 50m

toward to us. The results we got are showing in the below figure.

Fig 29. Final Test Guessing Results

Bill of material

Components Price

1 × 8-DIP MCP4921 DAC IC $2.54

1 × LT1009 precision reference IC $1.05

1 × 14-DIP TL974IN quad Op-Amp IC $0.98

1 × Mini-Circuits ZX60-272LN-S+ RF
amplifier

$39.95

2 x PCB Free

2 x PCB $30 each

2 x Antenna $5.99 each

TOTAL $116.5
Weight

The weight of our whole radar system is about 800 g.

Conclusions

We have made a rough comparison between the final test guessing results and the real

results recorded by the TA. For first three tests, which were further, the errors were all about 10

meters. However, for the last two tests, which were close, the errors were much smaller.

The results suggested that our radar system worked but have large errors when measuring

objects from further distance. The possible reason could be caused by big power loss for signal

traveling in long distance. There is still a large space to improve our system.

During the two quarters, we have learned a lot about radar system design according to

this senior design projects. It was a great experience taking this designing course. We all

believed that this experience will be very helpful for our career in the future.

Appendix

● Datasheet

a) VCO: ZX95-2536C+

b) Power splitter ZX10-2-42+

c) Mixer ZX05-43LH-S+ :

Python code for analyzing the results:

-*- coding: utf-8 -*-
#range radar, reading files from a WAV file
Originially modified by Meng Wei, a summer exchange student (UCD GREAT Program, 2014)
from Zhejiang University, China, from Greg Charvat's matlab code
Nov. 17th, 2015, modified by Xiaoguang "Leo" Liu, lxgliu@ucdavis.edu

import wave
import os
from struct import unpack
import numpy as np
from numpy.fft import ifft
import matplotlib.pyplot as plt
from math import log

#constants
c= 3E8 #(m/s) speed of light
Tp = 20E-3 #(s) pulse duration T/2, single frequency sweep period.
fstart = 2315E6 #(Hz) LFM start frequency

fstop = 2536E6 #(Hz) LFM stop frequency
BW = fstop-fstart #(Hz) transmit bandwidth
trnc_time = 0 #number of seconds to discard at the begining of the wav file

window = False #whether to apply a Hammng window.

for debugging purposes
log file
#logfile = 'log_new.txt'
#logfh = open(logfile,'w')
#logfh.write('start \n')

#read the raw data .wave file here
#get path to the .wav file
#filename = os.getcwd() + '\\running_outside_20ms.wav'
filename = os.getcwd() + '\\mar23-7.wav' # The initial 1/6 of the above wav file. To save time
in developing the code
#open .wav file
wavefile = wave.open(filename, "rb")

number of channels
nchannels = wavefile.getnchannels()

number of bits per sample
sample_width = wavefile.getsampwidth()

sampling rate
Fs = wavefile.getframerate()
trnc_smp = int(trnc_time*Fs) # number of samples to discard at the begining of the wav file

number of samples per pulse
N = int(Tp*Fs) # number of samples per pulse

number of frames (total samples)
numframes = wavefile.getnframes()

trig stores the sampled SYNC signal in the .wav file
#trig = np.zeros([rows,N])
trig = np.zeros([numframes - trnc_smp])
s stores the sampled radar return signal in the .wav file
#s = np.zeros([rows,N])
s = np.zeros([numframes - trnc_smp])

v stores ifft(s)
#v = np.zeros([rows,N])
v = np.zeros([numframes - trnc_smp])

#read data from wav file

data = wavefile.readframes(numframes)

for j in range(trnc_smp,numframes):
 # get the left (SYNC) channel
 left = data[4*j:4*j+2]
 # get the right (Data) channel
 right = data[4*j+2:4*j+4]
 #.wav file store the sound level information in signed 16-bit integers stored in little-endian
format
 #The "struct" module provides functions to convert such information to python native formats,
in this case, integers.

 if len(left) == 2:
 l = unpack('h', left)[0]
 if len(right) == 2:

 r = unpack('h', right)[0]
 #normalize the value to 1 and store them in a two dimensional array "s"
 trig[j-trnc_smp] = l/32768.0
 s[j-trnc_smp] = r/32768.0

#trigger at the rising edge of the SYNC signal
trig[trig < 0] = 0;
trig[trig > 0] = 1;

#2D array for coherent processing
s2 = np.zeros([int(len(s)/N),N])

rows = 0;
for j in range(10, len(trig)):
 if trig[j] == 1 and np.mean(trig[j-10:j]) == 0:
 if j+N <= len(trig):
 s2[rows,:] = s[j:j+N]
 rows += 1

s2 = s2[0:rows,:]

#pulse-to-pulse averaging to eliminate system performance drift overtime

for i in range(N):
 s2[:,i] = s2[:,i] - np.mean(s2[:,i])

#2pulse cancelation

s3 = s2
for i in range(0, rows-1):
 s3[i,:] = s2[i+1,:] - s2[i,:]

rows = rows-1
s3 = s3[0:rows,:]

#apply a Hamming window to reduce fft sidelobes if window=True
if window == True:
 for i in range(rows):
 s3[i]=np.multiply(s3[i],np.hamming(N))

#####################################
Range-Time-Intensity (RTI) plot
inverse FFT. By default the ifft operates on the row
v = ifft(s3)

#get magnitude
v = 20*np.log10(np.absolute(v)+1e-12)

#only the first half in each row contains unique information
v = v[:,0:int(N/2)]

#normalized with respect to its maximum value so that maximum is 0dB
m=np.max(v)
grid = v
grid=[[x-m for x in y] for y in v]

maximum range
max_range =c*Fs*Tp/8/BW
maximum time
max_time = Tp*rows

plt.figure(0)
plt.imshow(grid, extent=[0,max_range,0,max_time],aspect='auto', cmap =plt.get_cmap('gray'))
plt.colorbar()
plt.clim(0,-100)
plt.xlabel('Range[m]',{'fontsize':20})

plt.ylabel('time [s]',{'fontsize':20})
plt.title('RTI with 2-pulse clutter rejection',{'fontsize':20})
plt.tight_layout()
plt.show()

#plt.subplot(612)
#plt.plot(grid[5])

#plt.subplot(613)
#plt.plot(grid[6])

#plt.subplot(614)
#plt.plot(grid[20])

#plt.subplot(615)
#plt.plot(grid[30])

#plt.subplot(616)
#plt.plot(grid[40])

