

USING MATLAB CODE FOR RADAR

SIGNAL PROCESSING
EEC 134B Winter 2016

Amanda Williams

997387195

Team Hertz

CONTENTS:

I. Introduction

II. Note Concerning Sources

III. Requirements for Correct Functionality

IV. GUI Format

a. “Get base recording” button

b. “Select File” button

c. “Select File for 20m Mode” button

d. “Distance” output box

e. “Time to process” output box

f. Upper Axis

g. Lower Axis

V. Function Explanation

a. file_to_analyze()

b. get_data_array()

i. dbv()

c. find_max_power()

VI. Sample Runs and Respective Percent Error

a. 5.422m indoor test

b. 10.202m indoor test

c. 26.254 outdoor test (slightly overcast and windy)

d. 35-490m outdoor test (slightly overcast and windy)

I. INTRODUCTION

Using an audio jack and computer sound card, the filtered and amplified signal from the

radar system can be sampled and saved into a .wav file using Audacity. The computer

sound card can safely support up to a 1 Vp-p wave, so the radar system’s adjustable gain

stages are adjusted to ensure that the output remains below this value. This file holding

the signal data can be processed using MATLAB to produce a distance value for a

detected object. The following discusses the MATLAB GUI code and functions used

determine the range of the object and the accuracy of the measurement.

II. NOTE CONCERNING SOURCES

The GUI is based on a program called “read_data_RTI” written by Gregory L. Charvat

for the MIT IAP Radar Course 20112.5 which can be found at:

http://ocw.mit.edu/resources/res-ll-003-build-a-small-radar-system-capable-of-sensing-

range-doppler-and-synthetic-aperture-radar-imaging-january-iap-2011/projects/

The file function “dbv” was included within the downloaded program and remained in

the final version.

All adaptations differing from this program were developed and implemented by our

team.

III. REQUIREMENTS FOR CORRECT FUNCTIONALITY

For the GUI and program to function correctly and produce accurate data, the following

requirements must be adhered to:

1) The code here is ran through MATLAB R2011a. Using other versions of the

program may require some changes in syntax, particularly the manner in

which the .wav file is read.

2) The .wav file to analyze must already exist. In this explanation and the

example cases included, they were recorded and exported using Audacity and

saved to the same file as the rest of the program parts. Recording and

processing using solely MATLAB is possible, however it was not thoroughly

tested by the team due to lack of hardware to support it and therefore is not

explained here.

3) All program files (functions, GUI format, and recorded .wav files) must be

located in the same folder. The program is not equipped to handle the case if

this is not followed and will produce an error.

4) In order for any distance to be produced, a base recording of only the

environment must be present in the same folder as the rest of the file and

should be of approximately the same length as the samples including the

target. This file must also be loaded into the program and analyzed before any

other analysis may occur and the completion of such is signaled within the

GUI. This is to serve as environmental effects cancellation and is one of the

few key parts of the analysis. The program will not function correctly without

it.

http://ocw.mit.edu/resources/res-ll-003-build-a-small-radar-system-capable-of-sensing-range-doppler-and-synthetic-aperture-radar-imaging-january-iap-2011/projects/
http://ocw.mit.edu/resources/res-ll-003-build-a-small-radar-system-capable-of-sensing-range-doppler-and-synthetic-aperture-radar-imaging-january-iap-2011/projects/

IV. GUI FORMAT

The GUI is designed to make the signal processing easier and more efficient. It requires

only button presses and the selection of the desired file. The rest is automated and fixed

within the program itself.

All aspects of the GUI are recorded and explained below. A picture of each function for

the button is included, followed by a brief explanation. Any functions within these will be

explained in the next section (Section V) of the report.

Figure 1: GUI format for range detection upon initialization

a. “Get base recording” button

Figure 2 Function run when "Get Base Recording" button is pressed

This function produces the “basis” file used for canceling out any noise in the

received signal by recording and storing the data from the environment first. It

retrieves the environment data (Y), sampling frequency (FS), and number of bits

(NBITS) from the wav recording first, using file_to_analyze() to convert them

into arrays that MATLAB can use. Then, it declares the radar constants that will

be used in the program, using them as inputs to get_data_array() that will produce

the actual arrays of time (time), overall distance (R), and corresponding radar

output voltage data for each distance (basis) for the given .wav file. The start and

stop frequencies are based on the VCO frequencies corresponding to 0.5V and

4.5V respectively. The array of voltage ratios (in dBv) are normalized to the

maximum overall value before being averaged over time so that only the range vs.

voltage measurements remain. This array is made to be a global value so that it

may be used for other data analysis (aka to find the target). When it is complete,

the function will produce a “done” signal next to the button to signify that

analysis of recordings of targets may be completed.

b. “Select File” button

Figure 3: Function run when "Select File" button is pressed

This function produces the data to graph for both axes and the final output

distance value. Similar to what is completed for the basis file, it retrieves the

environment data (Y), sampling frequency (FS), and number of bits (NBITS)

from the wav recording for the target first, using file_to_analyze() to convert them

into arrays that MATLAB can use. Then, it declares the radar constants that will

be used in the program, using them as inputs to get_data_array() that will produce

the actual arrays of time (time), overall distance (R), and corresponding voltage

ratio values for each distance (S) for the given .wav file. The frequencies are

based on the VCO frequencies corresponding to 0.5V and 4.5V respectively. This

data is then graphed using imagesc (using the voltage data normalized by the

maximum) to get a visual representation of overall range vs. recording time vs.

voltage data ratio (dBv). The array of voltage ratios are then sent to

find_max_power() alongside the distance array, the basis array, and a signifier for

the analysis mode (0) to produce a graph to show only range versus voltage ratios

and to output the calculated distance value for the data. This value and the time it

took (in minutes) to produce this value (not including the formation of the basis

array) are output in their respective output boxes.

c. “Select File for 20m Mode” button

The only change from the above mode is the following line:

Figure 4: Changes from "Select File" to complete "Select File for 20m Mode"

The “20m Mode” runs almost identically to the default mode, however in order to

produce the actual distance more accurately, it requires a “1” to be entered into

the analysis mode to signify a shorter analysis range. This cuts down on analysis

time and, generally, produces a more accurate result in the presence of a noisier

signal.

d. “Distance” output box

Figure 5: Code to Display Distance Output in GUI

This box shows the distance that is output by either the 20m mode or the standard

mode depending on the button hit to signal the analysis.

e. “Time to process” output box

Figure 6: Code to Display the "Time to Process" output

This box shows the time required to output the distance mentioned above. It only

signifies the time used to analyze the actual data, not including the bias analysis

time. It is measured in respect to minutes.

f. Upper Axis

Figure 7: Code to Produce the Graph in the Upper Axis

This part of the code plots the scaled voltage level for each time and range versus

the time and ranges to produce a visual version of what the radar is detecting. This

allows an initial view of what the data that is being analyzed looks like, without

the basis or averaging being applied to the data. The final entry in the imagesc

command signifies the scale that the data will be graphed against, selected to be

from -50dBv to 0dBv to produce more distinct location lines that were producible

in a wider range, thereby giving the user a clearer image to analyze. This does not

affect the program outputs.

g. Lower Axis

or

Figure 8: Two Versions of Code to Produce the Graph in the Lower Axis

This part of the code plots the average voltage level (in inverse magnitude) over

time against distance. This allows for a simplified version of the data above,

giving a line in only two dimensions that can be examined to see relative levels

instead of a graph in three dimensions, making it easier for the user to physically

see and pick a maximum value to confirm the program output. In this way, it also

allows the observation of the system as only one distinctive peak should show and

an increased number of peaks signify noise or errors in the system or data

collection.

V. Function Explanation

a. file_to_analyze()

Figure 9: Code for file_to_analyze

This function is called whenever the user needs to open a file for base or the

normal or 20m modes of analyzation. On the button click, it opens up the window

explorer so that the user can select the desired .wav file and reads the sample data,

sample rate, and number of bits for that .wav file, returning those arrays of data to

the calling function.

 b. get_data_array()

Figure 10: Code for get_data_array

This part of the code begins by defining the range resolution (rr) and the

presumed max range of the radar (max_range) according to the calculated

resolution and bandwidth (BW). After these are defined, it splits the signal into

two, one for the SYNC data (trig) and one for the measured data (s). Then, the

program parses the measured data according to the rising edge of the sync pulse,

thereby creating the measured data array (sif) and time array (time). It does this

by checking for changing SYNC pulses, looking only for the rising edge

(trig>thresh) and confirming the edge (if start(ii) == 1 & mean(start(ii-11:ii-1))

==0) before parsing the data and including it into its appropriate position in the sif

matrix or time matrix.

Once this is collected, the average of the sif matrix is subtracted from all entries in

order to get rid of the average DC term. Then, the data is converted to time

domain using ifft(), or an inverse fast Fourier transform algorithm. It then

converts the values to dBv using dbv(), creating the final, voltage ratio output for

data_array. It also creates a range array using the number of samples per pulse as

a guideline for distance spacing over the calculated max distance, outputting

range_array.

 i. dbv()

Figure 11: Code for dbv

This function takes the input argument (in this case the array of voltage

values that are the parsed data from the signal) and converts it to decibel

scale referenced to a volt.

 c. find_max_power()

Figure 12: Code for find_max_power

The purpose of this function is to take the data array, basis file, overall distance values

and the analysis mode (either normal or 20m) and produce an array of scaled distances

that will match the size of the data array, as well as a final, single distance value

corresponding to the highest data value. This allows the two data sets to be graphed

linearly against one another on the second axis to allow an easier point-and-click distance

that may be used if the calculated distance appears incorrect.

To do so, first the array of measured data is normalized by the maximum available value.

Then, because the distance array is twice the size of the data array, the distance values are

rescaled and fit into an array of the same size of the distance array, the error of such is

negligible. In case the array of distance value is of unusual size and to prevent issues with

graphing, the last element is doubled.

The array of measured data is averaged across time to leave only one column of values of

the averaged input data that can be plotted versus distance. Then, the basis results that

were initially produced can be removed from the data, thereby leaving the actual received

signal of the system.

This array of data is then examined in overlapping increments of approximately 3m

which is averaged and stored into a secondary array, the middle locations of each section

recorded as the location of the average value (this leaves an up to a 1.5m error). This is

repeated throughout the data.

Once this is complete, the maximum of the data and its location is searched for in the

averaged data, the overall range of such dependent on the analysis mode (either only

about 20m out is examined, or the full 50m is examined). The location of this maximum

value is then used to find the index of the middle location which can finally be used to

find the actual scaled distance of that maximum magnitude since these two arrays are

equivalent and output this distance along with the scaled distance and data arrays. This

retains the maximum 1.5m error from the maximum search.

VI. SAMPLE RUNS AND RESPECTIVE PERCENT ERROR

The following GUI snapshots are recorded from two test runs the team performed to

examine the quality of the code and the PCB set-up we possessed. The PCBs were two

separate boards, one for the RF side of the system and the other for the baseband filtering

and amplification of the system, connected together with soldered on wires. The output

was hooked up to an audio cable plugged into the computer.

The first two tests were taken indoors at Kemper Hall, near the large front window. The

rain had just stopped and the sky was clearing up, so some distortion may be attributed to

that. The last two tests were taken outdoors in a small field. The dorm buildings, students,

and bike racks were nearby, and the sky was partly cloudy and it was very windy,

possibly causing some distortion in results. The can lids were on in all tests due to better

observed performance.

All of the following outdoor tests were conducted using an approximately 4 second

recording time. Tests were conducted using an 8 second recording time, however test

results were not significantly different.

All of the following indoor tests were conducted using an approximately 8 second

recording time. Tests were conducted using a 16 second recording time, however test

results were not significantly different.

The following summarizes the results of the program and its corresponding “point and

click” method.

a. 5.422m indoor test

Figure 13: Capture of Output for 5.422m test

This test was completed indoors on the upper floor walkway along the front window

of Kemper Hall. It was raining when the initial bias recording was completed and the

rain stopped sometime during testing, so the change in environmental light may be

the cause of some error or unusual peaks in the secondary graph. It was completed

using the 20m mode.

Actual distance = 5.422m

Program output distance = 5.264m => 2.91% error

Point and click distance = 2.687m => 50.44% error

b. 10.202m indoor test

Figure 14: Capture of Output for 10.202m test

This test was completed indoors on the upper floor walkway along the front window

of Kemper Hall. It was raining when the initial bias recording was completed and the

rain stopped sometime during testing, so the change in environmental light may be

the cause of some error or unusual peaks in the secondary graph. It was completed

using the 20m mode.

Actual distance = 10.202m

Program output distance = 10.4168m => 2.11% error

Point and click distance = 7.218m => 29.25% error

c. 26.254m outdoor test

Figure 15: Figure of Output for 26.254m test

This test was completed outdoors on a small grassy area near the dorms. Some bike

racks and other obscurities were present which do not appear in the initial image. It

was partially cloudy and quite windy when the initial bias recording was completed,

so the change in environment may be the cause of some error or unusual peaks in the

secondary graph. It was completed using the standard mode.

Actual distance = 26.254m

Program output distance = 20.2784m => 22.76% error

Point and click distance = 19.57m => 25.46% error

d. 35.490m outdoor test

Figure 16: Figure of Output for 35.490m test

This test was completed outdoors on a small grassy area near the dorms. Some bike

racks and other obscurities were present which do not appear in the initial image. It

was partially cloudy and quite windy when the initial bias recording was completed,

so the change in environment may be the cause of some error or unusual peaks in the

secondary graph. It was completed using the standard mode.

Actual distance = 35.490m

Program output distance = 41.5118m => 16.97% error

Point and click distance = 45.78m => 28.99% error

