
Application Note: Arduino Microcontroller
By Baban Malhi

Since my major is in Computer Engineering and Electrical Engineering and
also has embedded system job position, I decided to work on the Arduino
Microcontroller.
I also supported team Oreo with other task such as PCB design and
modular but I decided to make lab report on Arduino since other member of
the team will cover PCB design.

Introduction: Arduino is one of the most popular physical computing platforms
available today. It’s an amazing tool for both experienced and beginner
electronics students and electronic experts. Since it is very easy to use, a lot of
schools are asking students to use it, which is why it is getting very popular. Its
hardware and software, both combines and make a well supportive and solidly
designed electronic platform. The best thing about the Arduino is, it is an open
source which means the schematics, hardware design files, and source code are
all freely available for viewing and modification to the world. Which means, the
license to Arduino is free, anyone can download the schematics and modify it to
make microcontroller according to how they want it to work for them. So
everyone is free to make changes on the hardware design and produce their own
version. The Arduino Uno is a microcontroller board based on the ATmega328. It
has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6
analog inputs, a 16 MHz ceramic resonator, a USB connection, a power jack, an
ICSP header, and a reset button. It contains everything needed to support the
microcontroller, simply connect it to a computer with a USB cable or power it with
an AC-to-DC adapter or battery to get started. Reference design and Schematics
of the microcontroller can be found at the end of this report in Appendix at the
last page of this report. The ATmega328 provides UART TTL (5V) serial
communication, which is available on digital pins 0 (RX) and 1 (TX).

Input and Output: This is the very important part of the lab because I had
problem figuring out which ports used for what so I will explain it for you guys,
Each of the 14 digital pins on the Arduino Uno can be used as an input or output.
Arduino has its own system call function such as pinMode(), digitalRead() and
digitalWrite().They operate at 5 volts. Each pin can provide or receive a
maximum of 40 mA and has an internal pull-up resistor (disconnected by default)
of 20-50 kOhms
Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial

data. These pins are connected to the corresponding pins of the
ATmega8U2 USB-to-TTL Serial chip. Please see appendix C for the pin
diagram for ATmega328).

External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt
on a low value, a rising or falling edge, or a change in value. See the
attachInterrupt() function for details.

PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite()

function.
SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI

communication using the SPI library.
LED: 13. There is a built-in LED connected to digital pin 13. When the pin is

HIGH value, the LED is on, when the pin is LOW, it's off.
The Uno has 6 analog inputs, labeled A0 through A5, each of which provides 10
bits of resolution (i.e. 1024 different values). By default they measure from
ground to 5 volts, though is it possible to change the upper end of their range
using the AREF pin and the analogReference() function. Additionally, some pins
have specialized functionality:
TWI: A4 or SDA pin and A5 or SCL pin. Support TWI communication using the

Wire library.
There are a couple of other pins on the board:
 AREF. Reference voltage for the analog inputs. Used with

analogReference().
Reset. Bring this line LOW to reset the microcontroller. Typically used to add a
reset button to shields, which block the one on the board.

USB over current Protection: The Arduino Uno has a resettable polyfuse that
protects your computer's USB ports from shorts and over current. Although most
computers provide their own internal protection, the fuse provides an extra layer
of protection. If more than 500 mA is applied to the USB port, the fuse will
automatically break the connection until the short or overload is removed.

How Arduino was used in RF Project: In out labs, we started with building a
simple function generator that can output triangle, square, sawtooth, and
sinusoidal waveforms. We used direct digital synthesis circuits, DDS circuits. A
DDS circuit takes advantage of the ever-increasing speed of digital circuits to
implement fast waveform generators. This is where Arduino UNO comes handy
because we used Arduino UMO 8-bit microcontroller with an ATmega328P chip
to emulate a DDS circuit. We used to ATmega328P to program, which we used
later on our PCB for the final product.

Do you have everything you need?

- You need the Arduino UNO itself.
- A USB cable to connect the Arduino with the computer to program, it is

standard A-B cable, any length is OK

Lets get started:

- Take the Arduino out of its protective bag. (if there is anything missing,
make sure to contact your professor or the retail store where you got the
hardware from) Make sure it looks like the picture below.

- To power it on, plug one end of USB cable into the Arduino and the other
end into your computer. You computer will power the Arduino at this point
since you are not using the external power (Make sure Arduino is
connected straight to computer, some keyboard also have USB port- do

not connect to those ports because sometimes those ports will not allow
you to program the Arduino which is why I recommend you to connect
straight to your computer for saving time)

o If you connect the Arduino right, you should see a green light on the
right side of Arduino and also an orange light. (if no light blinks,
Make sure your connections are tight and also your computer is on
and please redo all the steps you done so far otherwise your
hardware is not working properly and that case get help from your
professor or from the retail store you got the hardware from)

Lets make your Arduino do something: We will start with “Hello World”. In this
part of tutorial, you will learn the basics of Arduino, using Arduino software and
uploading sketch to the Arduino board.

- Go to Arduino software download page and download the most updated
version of the software.

- Extract the package onto the desktop and run it to install the software onto
your computer

- Double click the Arduino software icon to open up the workspace, you can
find it in “start-> Programs-> Arduino.exe”

- Configure the chip you are using, in our case it should be ATMEGA328P
but to be sure, you can check it by reading the text on the chip it should
say ATMEGA plus some number.

- One you configure the chip, go to your Arduino application and click on the
“tools -> microcontroller (MCU) -> atmega328p”, if you using different chip,
you can select that in this class but make sure you select the right chip.
(your preferences will be saved, you will not have to do this step again
unless you decide to use different chip

- Select the port: to do that, in Arduino software select “tools -> Serial Port -
> COMX” make sure you select COM it is arbitrary so you can go to serial
ports in control panel and find what COM is attached to your Arduino and
select that com.

- Open Blink Sketch: Sketches are little scripts that you can send to the
Arduino to tell it how to act. Let's open up an Example Sketch. Go to
the File menu -> Sketchbook -> Examples -> Digital -> Blink

o The window should now show a bunch of text in the formerly
empty white space and the tab Blink above it

- The first step to getting a Sketch ready for transfer over to the
Arduino is to Verify/Compile it. It is basically checking for any
errors, if not then it will build the program which means it is
converting your code to the language, which Arduino understands,
and if everything works find then it should give no error and after few
seconds, you should see the message “Done compiling” No error
means it is ready to upload to the Arduino board.

- Reset: you must press the rest button on the board to prepare Arduino for
the new upload, this way your hardware is looking forward to flash the new
build for the board. To do it, simply press the black button on the board.

- Upload: Lets do what we been waiting for, To upload, simply click on file
and the “Upload to I/O Board and after few seconds, you should get new
screen with a message “Done Uploading”.

o If you get the following error message "avrdude:
stk500_getsync(): not in sync: resp=0x00" that means that the
Arduino is not responding

o If you get the following error: can't open device "COM10":
The system cannot find the file specified. It means that you
have too many COM ports (maybe you've got 9 Arduinos?)
You should make sure that the port is numbered as low as
possible.

Notice: The ATmega328 on the Arduino Uno comes preburned with a bootloader
that allows you to upload new code to it without the use of an external hardware
programmer. It communicates using the original STK500 protocol. You can also
bypass the bootloader and program the microcontroller through the ICSP (In-
Circuit Serial Programming) header using Arduino ISP or similar; see these
instructions for details.

APPENDIX:

Appendix A:
Tutorials on Arduino Coding
https://www.youtube.com/playlist?list=PLA567CE235D39FA84
http://arduino.cc/en/uploads/Main/arduino_Uno_Rev3-02-TH.zip

Appendix B:
Citation: http://www.arduino.cc

http://www.atmel.com
 http://en.wikipedia.org/wiki/ATmega328
 http://en.wikipedia.org/wiki/Arduino

Appendix C:
Schematic of the microcontroller:

Appendix D

